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Abstract. This study proposes Network-Structured Particle Swarm
Optimizer (NS-PSO) with various neighborhood topology. The proposed
PSO has the various network topology as rectangular, hexagonal, cylin-
der and toroidal. We apply NS-PSO with various topology to optimiza-
tion problems. We investigate their behaviors and evaluate what kind of
topology would be the most appropriate for each function.

Keywords: Particle Swarm Optimization (PSO), network structure,
Self-Organizing Map (SOM).

1 Introduction

Particle Swarm Optimization (PSO) [1] is an evolutionary algorithm to simulate
the movement of flocks of birds. Due to the simple concept, easy implementa-
tion and quick convergence, PSO has attracted much attention and is used to
wide applications in different fields in recent years. In PSO algorithm, there are
no special relationships between particles. Each particle position is updated ac-
cording to its personal best position and the best particle position among the
all particles, and their weights are determined at random in every generation.

On the other hand, the Self-Organizing Map (SOM) [2] is an unsupervised
learning and is a simplified model of the self-organizing process of the brain. The
map consists of neurons located on a hexagonal or rectangular grid. The neurons
self-organize statistical features of the input data according to the neighborhood
relationship of the map structure.

Various topological neighborhoods for PSO have been considered by re-
searches [3]–[7]. Each particle shares its best position among neighboring parti-
cles on the network. However, the information of each particle is not updated
according to the neighborhood distance on the network.

In our past study, we have applied the concept of SOM to PSO and have pro-
posed a new PSO algorithm with topological neighborhoods; Network-Structured
Particle Swarm Optimizer considering neighborhood relationships (NS-PSO) [8].
All particles of NS-PSO are connected to adjacent particles by a neighborhood re-
lation, which dictates the topology of the 2-dimensional network. The connected
particles, namely neighboring particles on the network, share the information of
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their own best position. In every generation, we find a winner particle, whose
function value is the best among all particles, as SOM algorithm, and each par-
ticle is updated depending on the neighborhood distance between it and the
winner on the network. However, the relevance between the efficiently of op-
timization and the shape of network topology of NS-PSO was not completely
clear.

In this study, we propose NS-PSO with various neighborhood topology. We ap-
ply NS-PSO to the various network topology as rectangular, hexagonal, cylinder
and toroidal. NS-PSO with various topology are applied to eight test functions
which are unimodal and multimodal. We investigate their behaviors and evaluate
what kind of topology would be the most appropriate for each function. From
results, we find that the circular-topology is effective for the simple unimodal
functions, because this topology easily transmits the information of each best
position to the whole particles. We also confirm that the hexagonal-topology is
appropriate for the complex multimodal functions, because this topology con-
tains various kinds of particles and this effect averts the premature convergence.

2 Network-Structured Particle Swarm Optimizer
Considering Neighborhood Relationships (NS-PSO)

In the algorithm of the standard PSO, multiple solutions called “particles” coex-
ist. At each time step, the particle flies toward its own past best position and the
best position among all particles. Each particle has two informations; position
and velocity. The position vector of each particle i and its velocity vector are
represented by Xi = (xi1, · · · , xid, · · · , xiD) and V i = (vi1, · · · , vid, · · · , viD),
respectively, where (d = 1, 2, · · · , D), (i = 1, 2, · · · , M) and xid ∈ [xmin, xmax].

The algorithm of NS-PSO is based on both two structures; the standard PSO
and SOM. NS-PSO has following three key features.

1. All particles are connected to adjacent particles by a neighborhood relation
which dictates the topology of the network. In this study, we use various topol-
ogy networks shown in Fig. 1 and investigate their behaviors. The rectangular-
topology and the hexagonal-topology as Figs. 1(a)–(b) are the sheet shapes, and
the cylinder-topology and toroidal-topology as Figs. 1(c)–(d) are circular map.

(a) (b) (c) (d)

Fig. 1. Different map shapes with 10×10 particles used in this study. (a) Rectangular-
topology. (b) Hexagonal-topology. (c) Cylinder-topology. (d) Toroidal-topology.
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2. The particles share the local best position between the neighborhood particles
directly connected.
3. In every generation, we find a winner particle with best function value among
all particle as SOM learning.

By these features, each particle of NS-PSO is updated depending on its own best
position, the position of the winner and the neighborhood distance between it
and the winner on the network.

(NS-PSO1) (Initialization) Let a generation step t = 0. Randomly initialize
the particle position Xi, initialize its velocity V i for each particle i to zero,
and initialize P i = (pi1, pi2, · · · , piD) with a copy of Xi. Evaluate the objective
function f(Xi) for each particle i and find P g with the best function value
among all the particles. Define g as the winner c. Find Li = (li1, li2, · · · , liD)
with the best function value among the directly connected particles, namely own
neighbors.

(NS-PSO2) Evaluate the fitness f(Xi) and find a winner particle c with the
best fitness among the all particles at current time t;

c = arg min
i
{f (Xi(t))}. (1)

For each particle i, if f(Xi) < f(P i), the personal best position (called pbest)
P i = Xi. Let P g represents the best position with the best fitness among all
particles so far (called gbest). If f(Xc) < f(P g), update gbest P g = Xc, where
Xc = (xc1, xc2, · · · , xcD) is the position of the winner c.

(NS-PSO3) Find each local best position (called lbest) Li among the particle
i and its neighborhoods, which are directly connected with i on the network, so
far. For each particle i, update lbest Li, if needed.

(NS-PSO4) Update V i and Xi of each particle i depending on its lbest, position
of the winner Xc and the distance on the network between i and the winner c,
according to

vid(t + 1) = wvid(t) + c1rand(·) (lid − xid(t)) + c2hc,i (xcd − xid(t)) ,

xid(t + 1) = xid(t) + vid(t + 1),
(2)

where w is the inertia weight determining how much of the previous velocity
of the particle is preserved. c1 and c2 are two positive acceleration coefficients,
generally c1 = c2, rand(·) is an uniform random number sample from U(0, 1).
hc,i is the fixed neighborhood function defined by

hc,i = exp
(
−‖ri − rc‖2

2σ2

)
, (3)

where ‖ri−rc‖ is the distance between network nodes c and i on the network, and
the fixed parameter σ corresponds to the width of the neighborhood function.
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Therefore, large σ strengthens particles’ spreading force to the whole space, and
small σ strengthens their convergent force toward the winner.

(NS-PSO5) Let t = t + 1 and go back to (NS-PSO2).

3 Experimental Results

In order to evaluate the performance of NS-PSO with various topology, we use
eight benchmark optimization problems summarized in Table 1. f1, f2, f3 and
f4 are unimodal functions, and f5, f6, f7 and f8 are multimodal functions with
numerous local minima. All the functions have D variables, and the symmetric
landscape maps of Sphere, Rosenbrock, Rastrigin and Ackley functions with two
variables are shown in Fig. 2. Table 2 lists the dimensionality D, the optimum
solution x∗, the optimum function value f(x∗) and the initialization ranges. In
order to investigate the behaviors in various initialization spaces, we use the
symmetric and the asymmetric initialization spaces. The population size M is
set to 36 in PSO, and the network size is 6 × 6 in NS-PSO with each topology.
For PSO and NS-PSO, the parameters are set as w = 0.7 and c1 = c2 = 1.6.
The neighborhood radius σ of all NS-PSOs are 1.5. We carry out the simulations
repeated 30 times for all the optimization functions with 3000 generations.

Table 1. Eight Test Functions

Function name Test Function

Sphere function; f1(x) =

D−1∑
d=1

x2
d

Rosenbrock’s function; f2(x) =

D−1∑
d=1

(
100

(
x2

d − xd+1

)2
+ (1 − xd)

2
)

3rd De Jong’s function; f3(x) =
D∑

d=1

|xd|

4th De Jong’s function; f4(x) =
D∑

d=1

dx4
d

Rastrigin’s function; f5(x) =

D∑
d=1

(
x2

d − 10 cos (2πxd) + 10
)

Ackley’s function; f6(x) =

D−1∑
d=1

(
20 + e − 20e

−0.2
√

0.5(x2
d
+x2

d+1)

−e0.5(cos(2πxd)+cos(2πxd+1))
)

Stretched V sine wave; f7(x) =

D−1∑
d=1

(x2
d + x2

d+1)
0.25

(
1 + sin2(50(x2

d + x2
d+1)

0.1)
)

Griewank’s function; f8(x) =
D∑

d=1

x2
d

4000
−

D∏
d=1

cos

(
xd√

d

)
+ 1
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Fig. 2. Symmetric landscape of four test functions with two variables. First and second
variables are on the x-axis and y-axis, respectively, and z-axis shows its function value.
(a) Sphere. (b) Rosenbrock. (c) Rastrigin. (d) Ackley.

Table 2. Parameters for test functions

f D x∗ f(x∗)
Initialization Space

Symmetric Asymmetric

f1 50 [0, 0, . . . , 0] 0 [−5.12, 5.12]D [−2.56, 5.12]D

f2 50 [1, 1, . . . , 1] 0 [−2.048, 2.048]D [−1.024, 2.048]D

f3 50 [0, 0, . . . , 0] 0 [−2.048, 2.048]D [−1.024, 2.048]D

f4 50 [0, 0, . . . , 0] 0 [−1.28, 1.28]D [−0.64, 1.28]D

f5 50 [0, 0, . . . , 0] 0 [−5.12, 5.12]D [−2.56, 5.12]D

f6 50 [0, 0, . . . , 0] 0 [−10, 10]D [−5, 10]D

f7 50 [0, 0, . . . , 0] 0 [−30, 30]D [−15, 30]D

f8 50 [0, 0, . . . , 0] 0 [−600, 600]D [−300, 600]D

3.1 Symmetric and Asymmetric Functions

The performances with the minimum and mean function values over 30 inde-
pendent runs on eight functions with the symmetric initialization are listed in
Table 3. The best results of the mean values among all the algorithms are shown
in bold. All NS-PSOs with various topology evidently surpasses the standard
PSO on all the eight functions. In fact, the standard PSO has not obtained bet-
ter results than any other algorithms which consider the network-structure. From
these results, we can say that PSO, which has the specific network-structure, is
more effective than the standard PSO, which has no neighborhood relationship,
for the symmetric functions.

Table 4 shows the best result among the five algorithms and the differ-
ence between the best result and the result of each algorithm. NS-PSO with
rectangular-topology, with hexagonal-topology, with cylinder-topology and with
toroidal-topology achieve the best values 0, 3, 2 and 3 times, respectively. For the
unimodal functions as f1, f2, f3 and f4, NS-PSO with toroidal-topology has ob-
tained the best results most frequently, and the cylinder-topology delivers a very
small difference from the best results. However, for the multimodal functions as
f5, f6, f7 and f8, the differences between the results of toroidal-topology and the
best results are bigger than other three NS-PSOs although it is the best topol-
ogy for the unimodal functions. Meanwhile, NS-PSO with hexagonal-topology
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Table 3. Comparison results of PSO and NS-PSO with symmetric initialization on 8
test functions with D = 50

f PSO
NS-PSO

Rectangular Hexagon Cylinder Toroidal

f1
Mean 2.29e-20 8.22e-25 1.50e-23 1.62e-25 1.58e-25

Minimum 4.09e-27 1.51e-29 1.29e-22 9.59e-32 1.78e-31

f2
Mean 55.24 43.61 42.56 38.80 40.82

Minimum 36.74 38.48 35.56 31.04 30.33

f3
Mean 7.49e-06 1.23e-07 7.37e-09 3.93e-08 4.50e-08

Minimum 9.41e-11 3.15e-12 5.81e-13 1.85e-12 3.19e-11

f4
Mean 1.58e-35 1.51e-41 1.32e-41 2.90e-42 3.53e-44

Minimum 9.86e-42 7.96e-47 2.84e-46 3.90e-49 1.32e-50

f5
Mean 148.31 92.80 104.44 88.32 115.45

Minimum 94.52 52.73 60.69 45.77 29.85

f6
Mean 249.67 159.62 157.28 193.50 205.75

Minimum 97.84 67.60 41.13 64.90 66.46

f7
Mean 65.62 41.35 33.46 41.06 43.04

Minimum 39.36 21.95 17.68 18.90 21.78

f8
Mean 0.2440 0.0853 0.0448 0.0924 0.0350

Minimum 0 0 1.11e-16 1.11e-16 0

Table 4. Difference from the best result with symmetric initialization

Best Difference from the best mean result
f Mean

PSO
NS-PSO

Result Rectangular Hexagon Cylinder Toroidal

f1 1.58e-25 2.29e-20 6.64e-25 1.49e-23 4.72e-27 0

f2 38.80 16.44 4.82 3.77 0 2.02

f3 7.37e-09 7.48e-06 1.15e-07 0 3.19e-08 3.76e-08

f4 3.53e-44 1.58e-35 1.50e-41 1.32e-41 1.32e-41 0

f5 88.319 60.00 4.48 16.12 0 27.13

f6 157.28 92.39 2.34 0 36.22 48.47

f7 33.4615 32.16 7.89 0 7.60 9.58

f8 0.0350 0.2090 0.0503 0.0098 0.0574 0

obtains the best results on f6 and f7, and it can obtain stable good results, which
are small differences from the best results, for other two multimodal functions.
NS-PSO with rectangular-topology achieves the stable good results for both the
unimodal and multimodal functions even if it can not obtain the best results
among NS-PSOs for any benchmarks.

The performances over 30 independent runs on asymmetric functions are listed
in Table 5. Since the standard PSO can not obtain the best results among all
five PSOs for any benchmarks, PSO with some networks is more suitable for the
optimization problems than the standard PSO.
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Table 5. Comparison results of PSO and NS-PSO with asymmetric initialization on 8
test functions with D = 50

f PSO
NS-PSO

Rectangular Hexagon Cylinder Toroidal

f1
Mean 2.31e-21 2.03e-24 1.13e-23 4.95e-22 8.15e-26

Minimum 3.58e-26 2.96e-29 8.27e-28 3.99e-30 8.90e-31

f2
Mean 55.96 64.80 50.02 65.96 40.23

Minimum 6.22 15.47 0.1998 13.19 0.2033

f3
Mean 2.06e-05 2.56e-08 8.32e-09 7.60e-08 1.02e-07

Minimum 1.65e-10 5.86e-12 3.29e-12 2.38e-11 1.15e-11

f4
Mean 4.82e-36 4.72e-43 3.60e-39 3.44e-43 4.02e-44

Minimum 8.51e-41 2.74e-47 1.79e-46 1.41e-48 8.03e-51

f5
Mean 150.70 96.54 89.65 87.16 153.61

Minimum 104.47 57.71 49.75 53.73 34.63

f6
Mean 190.24 177.03 142.66 207.75 217.90

Minimum 69.48 69.13 37.87 81.76 35.02

f7
Mean 61.90 42.19 34.93 37.18 41.14

Minimum 37.86 21.84 19.00 21.87 18.33

f8
Mean 0.0521 0.0240 0.1199 0.0249 0.1576

Minimum 0 0 0 0 1.11e-16

Table 6. Difference from the best result with asymmetric initialization

Best Difference from the best mean result
f Mean

PSO
NS-PSO

Result Rectangular Hexagon Cylinder Toroidal

f1 8.15e-26 2.31e-21 1.95e-24 1.13e-23 4.95e-22 0

f2 40.23 15.73 24.57 9.79 25.73 0

f3 8.32e-09 2.06e-05 1.73e-08 0 6.77e-08 9.38e-08

f4 4.02e-44 4.82e-36 4.32e-43 3.60e-39 3.04e-43 0

f5 87.16 63.54 9.39 2.49 0 66.45

f6 142.66 47.58 34.37 0 65.09 75.24

f7 34.93 26.96 7.26 0 2.25 6.21

f8 0.0240 0.0281 0 0.0959 9.13e-04 0.1336

Table 6 shows the the difference between the best result and the result of
each algorithm. For the unimodal functions, NS-PSO with toroidal-topology can
obtain the best results on f1, f2 and f4, and also on f3, it is a very small differ-
ence from the best results. Therefore, we can say that toroidal-topology is the
most effective for the asymmetric unimodal functions as same as the symmet-
ric unimodal functions. However, for the multimodal functions, NS-PSO with
toroidal-topology obtain the worst results 3 times among five algorithms includ-
ing the standard PSO. On the other hand, NS-PSO with hexagonal-topology
obtains the best results 2 times, in particular, it evidently surpasses other four
algorithms on f6.
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From these results, on both symmetric and asymmetric spaces, the circular-
shaped NS-PSO as toroidal-topology is more suitable for the unimodal functions,
and the sheet-shaped NS-PSO as hexagonal-topology is more effective for the
multimodal functions. In particular, we found that the toroidal-topology is not
suitable on the asymmetric multimodal functions.

3.2 Behaviors of NS-PSO with Various Topology

The convergence rate of NS-PSO is almost same or slower than the standard
PSO. In the standard PSO, the particles move toward gbest or toward pbest,
however, the direction, which more particles move toward, is decided at random
on every generation. On the other hand, the neighborhood gaussian function
is used in NS-PSO, then, the particles move according to the neighborhood
distance between the winner and them. The winner’s neighborhood particles
move toward the winner, so that they spread to whole space. For the particles
which are not 1-neighbors of the winner but are connected near the winner, the
gravitation toward the winner is strong. The other particles fly toward their
lbest. In other words, the roles of the NS-PSO particles are determined by the
connection relationship, and they produce the diversity of the particles. These
effects avert the premature convergence, and the particles of NS-PSO can easily
escape from the local optima.

Discussion about evaluation of each topology: Let us consider the net-
work topology and its behavior in terms of average node-to-node distance L,
which is also known as average shortest path length, and the average number of
particles in local neighbor Nl. On 6 × 6 map, the average shortest path length
L of respective topology; rectangular, hexagonal, cylinder and toroidal, are 6.6,
5.34, 5.8 and 5.0, respectively. The average number of particles Nl in local neigh-
bor including itself of respective topology; rectangular, hexagonal, cylinder and
toroidal, are 4.6, 6.18, 4.8 and 5.0. Because the cylinder and toroidal are the cir-
cular topology, the individuality of each particle is almost same. In other words,
on toroidal-topology, L and Nl is completely same for any of the particles. Fur-
thermore, L of toroidal-topology is the smallest in four NS-PSOs. From these
effects, it is easy to transmit the information of lbest to the whole particles,
therefore, the circular topology is effective for the unimodal function which is
simple. However, the premature communication produces the premature conver-
gence, then, toroidal-topology easily goes into local optima in the multimodal
functions. On the other hand, NS-PSO with hexagonal-topology contains various
kinds of particles which has different shortest path length and different size of
local neighbors, although L is small and Nl is big. Because these effects produce
the diversity of the particles and avert the premature convergence, the particles
of NS-PSO with hexagonal-topology can easily escape from the local optima.

4 Conclusions

In this study, we have proposed Network-Structured Particle Swarm Optimizer
(NS-PSO) with various neighborhood topology which is a collaboration between
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Self-Organizing Map (SOM) and PSO. All particles of NS-PSO are connected
to adjacent particles by a neighborhood relation, and their information are up-
dated by the neighborhood topology. We have applied NS-PSO with various
topology to optimization problems. and have confirmed that PSO, which has
the specific network-structure, is more effective than the standard PSO, which
has no neighborhood relationship. Furthermore, we have found that the toroidal-
topology and the hexagonal-topology are suitable for the unimodal and for the
multimodal function, respectively.
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