
Analysis of Synchronization States in Coupled
Oscillators via Memristors as Ladder Structure

Yukinojo Kotani, Yoko Uwate and Yoshifumi Nishio
Dept. Electrical and Electronic Engineering

Tokushima University
Email: {kotani, uwate, nishio}@ee.tokushima-u.ac.jp

Abstract—A memristor has been focused on as a synapse in
various studies. The interesting point of this circuit element is that
resistance depends on charge and flux, so it has dynamics between
current and voltage. Recently, many researchers have investigated
synchronization in coupled circuits via memristors to apply for
artificial network systems such as associative memory devices.
Our research group has already proposed three coupled van der
Pol oscillators with memristor couplings as a ladder structure,
and obtained anti– and in–phase synchronization state by using
memristors as synapses. However, we have not investigated the
cause of this phenomenon in detail. In this study, we make clear
synchronization states obtained by using Poincaré method.

I. INTRODUCTION

Synchronization is one of the interesting nonlinear phenom-
ena in nature, and it has been investigated to apply for artificial
systems such as associative memory devices [1], [2], microgrid
network system [3], [4], and IoT systems [5], [6]. Therefore,
it is important for human lives to investigate synchronization
phenomena. Synchronization was also obtained in coupled
circuits. Recently, a memristor has been focused on as a
synapse in coupled circuits because it has dynamics between
charge and flux.

A memristor is the fourth basic circuit elements; a resistor, a
capacitor and an inductor. It was mathematically introduced by
L. O. Chua in 1971 [7], and it was developed using by Hewlett-
Packard Lab in 2008 [8]. The interesting point of this circuit
element is that resistance depends on charge and flux, so it
has dynamics between current and voltage because charge and
flux is defined as integral of current and voltage respectively.
M. Itoh has proposed the memristor model characterized by
piece–wise linear function [9]. This memristor model has been
also used as synapses in coupled FitzHugh–Nagumo circuits
[10].

In this study, we investigate synchronization in three cou-
pled van der Pol oscillators with memristor couplings as a
ladder structure in detail. We visualize synchronization states
by using Poincaré methods.

II. PROPOSED MODEL

Our memristor model is shown in Fig. 1 [9]. Figure 1
(a) shows a schematic model of a memristor. Resistance of
the memristor is called memristance M(q). Memristance is
defined as the gradient of q - φ characteristic curve defined
as the piecewise-linear function φ(q) in Fig. 1 (b). q and φ
denote charge and flux respectively.

(a) (b)

Fig. 1: Memristor model. (a) Schematic model. (b) q−φ curve.

Hence, φ(q) and M(q) are represented as follows.

φ(q) = bq + 0.5(a− b)(|q + 1| − |q − 1|)

M(q) =
dφ(q)

dq
=

{
a (|q| < 1)

b (|q| > 1)

(a > 0, b < 0).

(1)

Figure 2 shows the three coupled van der Pol oscillators with
memristor couplings as a ladder structure.

Fig. 2: Three coupled van der Pol oscillators with memristor
couplings as a ladder structure.

A van der Pol oscillator consists of a third-power nonlinear
resistor, a capacitor, and an inductor. The current–voltage
characteristic curve of the nonlinear resistor is defined as Eq.
(2).

iG,k = −g1vk + g3vk
3 (g1, g3 > 0). (2)
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Then, the circuit equations are described by the following
equations.

C
dvk
dt

= −iR,k − iL,k − iG,k

L
diR,l

dt
= vl −M(ql)(iR,l + iL,l+1)

L
diL,l

dt
= vl −M(ql−1)(iR,l−1 + iL,l)

2L
diR,2

dt
= v2 −M(q2)(iR,2 + iL,3)

2L
diL,2

dt
= v2 −M(q1)(iR,1 + iL,2)

dqk
dt

= iR,k + iL,k+1

M(qk) =
dφ(qk)

dqk
=

{
a (|qk| < 1)

b (|qk| > 1)

φ(qk) = bqk + 0.5(a− b)(|qk + 1| − |qk − 1|).

(3)

These equations should be normalized to investigate the syn-
chronization states for numerical calculation. By changing the
variables and parameters such that

vk =

√
g1
g3

xk, iR,k =

√
g1C

g3L
yR,k, iL,k =

√
g1C

g3L
yL,k,

qk = zk, γ =

√
C

L
, t =

√
LCτ, ε = g1

√
L

C
, ζ = C

√
g1
g3

.

The normalized circuit equations are obtained by changing the
variables and the parameters as Eq. (2).

dxk

dτ
= ε(1− x2

k)xk − yR,k − yL,k

dyR,k

dτ
= xk − yR,k − γM(zk)(yR,k + yL,k+1)

dyL,k

dτ
= xk − yL,k − γM(zk)(yR,k−1 + yL,k)

dyR,k

dτ
= 0.5{xk − yR,k − γM(zk)(yR,k + yL,k+1)}

dyR,k

dτ
= 0.5{xk − yR,k − γM(zk)(yR,k + yL,k+1)}

dzk
dτ

= ζ(yR,k + yL,k+1)

M(zk) =
dφ(zk)

dzk
=

{
a (|zk| < 1)

b (|zk| > 1)

φ(zk) = bzk + 0.5(a− b)(|zk + 1| − |zk − 1|).

(4)

Here, k = 1, 2, 3, l = 1, 3, yL,1, yR,3, yR,0, yL,0, z3 = 0. τ
is the scaling time, ε is the nonlinearity, γ is the coupling
strength, and ζ is the coupling factor.

Our research group investigated synchronization phenomena
in three coupled van der Pol oscillators with memristor cou-
plings as a ladder structure [15]. Two synchronization states;
only anti-phase synchronization between adjacent oscillators

and in- and anti-phase synchronization between adjacent os-
cillators were obtained by setting different initial conditions.
It means that these two phenomena coexist. Figure 3 shows
the numerical results obtained by calculating Eq. (4).

(a) (b)

Fig. 3: Numerical results obtained by calculating Eq. (4).
a = 5.0, b = −0.1, ε = 0.1, γ = 0.1, and ζ = 1.0.
(a) Only anti-phase synchronization, (b) Anti– and in–phase
synchronization.

In Fig. 3 (a), first and second oscillators are anti–synchronized,
and second and third oscillators are also anti–synchronized.
This phenomenon has also obtained when resistors are used
as synapses. In Fig. 3 (b), first and second oscillators are
in–synchronized, and second and third oscillator are anti–
synchronized. This phenomenon has newly confirmed by re-
placing resistors with memristors, so coexistence of these two
phenomena is interesting in our proposed model.

III. RESULTS

The normalized circuit equations are calculated by the
Runge–Kutta method with step size h = 0.01, The parameters
were set to ε = 0.1, γ = 0.1, ζ = 1.0, a = 5.0, and b = −0.1.

First, we analyze the time–series of the relative phase
differences ∆θ1,k, xk, Mk. We define Poincaré section as the
region H ∈ {x1 > 0, y1 = 0}. ∆θ1,k is obtained by Eq.
(5) when the solution orbits of first oscillator pass through the
Poincaré section H .

∆θ1,k = |θk − θ1| = | arctan yk
xk

| (5)

Figure 3 (a) shows the numerical results obtained by
calculating Eq. (4) and using Poinaré map when first and
second oscillators were anti-synchronized. Figure 3 (b) also
shows the numerical results when first and second oscillators
were in-synchronized. Count means the times that the solution
orbits pass through the Poincaré section H . Moreover, Tab. 1
shows the average of the absolute value of the relative phase
differences.

TABLE I: Average relative phase differences.

Phase difference Synchronization state
(a) (b)

∆θ1,2 179.980 0.562
∆θ1,3 1.735 174.350
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(a) (b)

(1)

(2)

(3)

Fig. 4: Numerical results obtained by calculating Eq. (3) and
using Poincaré map. (a) Only anti–phase synchronization, (b)
Anti– and in–phase synchronization. (1) Time-series of ∆θ1,k,
(2) Time-series of zk, (3) Time-series of Mk.

In case (a), zk passing through the memristors converged to
almost 0, and Mk = a = 5.0. All memristors behave as
positive resistors, so only anti–phase synchronization between
adjacent oscillators were confirmed. In case (b), z1 passing
through the memristors converged to value more than 1, and
M1 = b = −0.1. The memristor between first and second
oscillators behaved as a negative resistor, so in–phase synchro-
nization between first and second oscillators was confirmed.

IV. CONCLUSIONS

This study investigated synchronization phenomena in the
coupled three van der Pol oscillators with memristor couplings
as a ladder structure by Poincaré map. As a result, In addition,
we made clear the changes of synchronization states by using
Poincaré method. For the future works, we would like to use
theoretical analysis and circuit simulations. These methods
provide the fundamental evidences for the cause and effect
relationship between the dynamics of the memristor couplings
and the synchronization states.
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