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Abstract—In this study, we investigate complexities of actual
neuron signals using nonlinear time series analysis such as attrac-
tor reconstruction and fractal dimension. The simulation results
showed that changes in the chaotic characteristics obtained from
attractor reconstruction and the graphs of fractal dimensions as
the brain developed.

I. INTRODUCTION

Understanding how neural circuits in the brain are formed
and function is a major goal of many neuroscience projects [1].
Neurons fire and generate spikes due to the potential difference
across ion channels inside and outside the cell. Neuronal
signals that generate continuous spike sequences are referred
to as being in a burst state. In many studies of neuron activity
patterns, the detection and analysis of these burst patterns
are central because the correlation of these burst patterns is
believed to play an important role in the brain’s information
processing, such as information transmission processes [2],
[3]. While these analysis techniques are effective for investi-
gating current brain activity patterns, they are too complex to
observe the influence of the entire network of neuron groups.
The applicant believes that new indicators and evaluation
methods that can more simply evaluate the activity patterns
of neuron groups are necessary.

In our previous study, we applied nonlinear time series
analyses, including attractor reconstruction, recurrence plots,
and Lyapunov exponents, to actual neuron data obtained from
Wister rat brain [4]. Attractor reconstruction and recurrence
plots successfully visualized the neuron signals, and the cal-
culation of Lyapunov exponents confirmed that the neuron
signals exhibit chaotic properties.

In this study, we extended the length of the time series
analyzed from 1 minute to 3 minutes. Additionally, we in-
vestigated new features derived from attractor reconstruc-
tion images, focusing on two aspects: the incorporation of
temporal information into two-dimensional attractors and the
distribution of distances between plots in the two-dimensional
attractor space. Furthermore, to clarify the chaotic nature of
neuron signals, we examined not only Lyapunov exponents but
also fractal dimensions, which were also computed. Simulation
results revealed that new information from the attractors and

graphs of fractal dimensions demonstrated changes in these
characteristics as neurons developed.

II. ACTUAL NEURON DATA

The neuronal data used in this study are explained. Wister
rat cortex was used as primary cell cultures. Embryonic day
18 rodent brains were taken from mother rats [5]. It was
stored in an incubator and neuronal signals were measured
15, 20 and 30 days after taking it out. By using this neuron
data, it becomes possible to understand the characteristics
of chaotic properties during the brain’s developmental pro-
cess. The neuron signals were measured using MaxOne from
MaxWell Biosystems [6], [7]. MaxOne is CMOS-based high-
density micro electrode array (HD-MEA).

Figure 1shows the raster plot obtained from the same
neuronal culture across multiple days; DIV15, 20 and 30,
using 1,024 electrodes. DIV stands for Day in Vitro, where
the numbers represent days. In other words, DIV15 means 15
days after the rat brain was picked out.

(a) DIV 15. (b) DIV 20.

(c) DIV 30.

Fig. 1. Raster plots.
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Next, we calculate the spike rate at time bins, then time-
series data are obtained as shown in Fig. 2.
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(a) DIV 15.
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(b) DIV 20.
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(c) DIV 30.

Fig. 2. Time series of spike rate.

III. ATTRACTOR RECONSTRUCTION

As a method for attractor reconstruction, the use of a time-
delay coordinate system based on differences at fixed time
delays has been proposed [8], [9]. The transformation into
a time-delay coordinate system is performed by constructing
an m-dimensional vector in a reconstructed state space of
dimension m, using the following equation, where τ represents
the time delay:

y(t) = {x(t), x(t+ τ), ..., x(t+ (m− 1)τ}. (1)

Figure 3 shows the simulation results when neuron time
series data is embedded in 3-dimensional space with τ=10.
From this figure, we confirm that all three cultures exhibit a
clear structure, because the orbit draws in certain range and
does not move about randomly. It was also found that the part
of the attractor showing complex behavior became smaller as
the number of days increased: at DIV 15, the entire attractor
is complex, while at DIV 30, a mixture of complex and simple
behavior can be observed.

The time series of the neuronal signals are embedded
in a two-dimensional space and the results with the time
information shown in color is shown in Fig. 4. Red indicates
early time and blue indicates time passed. These results show
that red and blue dots are mixed in the case of young culture
(DIV 15), whereas red and blue dots are separated in the case
of neuronal signals that have been old for a number of days
(DIV 30).

(a) DIV 15. (b) DIV 20.

(c) DIV 30.

Fig. 3. Attractor reconstruction (τ=10).

(a) DIV 15.

(b) DIV 20.

(c) DIV 30.

Fig. 4. Attractor reconstruction in 2-dimensional space with time information.
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Next, in the diagram in Fig. 4, the distance between the two
points is calculated and shown as a distribution in Fig. 5. In
the case of DIV15, the distribution ranges widely from short
to long distances. In the case of DIV20, there are two peaks
in the distribution: one at distance 2 and the other at distance
25. In the case of DIV 30, the distance between the two peaks
is smaller and, moreover, the peak below distance 1 is very
large. The other peak is made at distance 19.

In summary, Figs. 3-5 show that young neurons are more
complex and older neurons have grown to have some structure.
Understanding the details of their structure is a future task.

Distance Distance

(a) DIV 15. (b) DIV 20.

Distance

(c) DIV 30.

Fig. 5. Distribution of distance.

IV. FRACTAL DIMENSION

Finally, the fractal dimension is investigated for the neuronal
signals. One feature of deterministic chaos is self-similarity
as a static feature of attractors. This can be quantitatively
evaluated by fractal dimension analysis. If the estimated fractal
dimension for an attractor is non-integer, it is likely that
the dynamical system that produced the attractor had chaotic
dynamics.

In this study, the fractal dimension is obtained using the cor-
relation integral method. This is called the GP (Grassberger-
Procaccia) algorithm [10], [10]. The GP algorithm calculates
the correlation dimension which is one measure of fractal
dimension by calculating the correlation integral.

If v(i) ∈ Rm is a point on the reconstructed attractor, the
correlation integral is defined by the following equation.

Cm(r) = lim
n→∞

1

N2

N∑
i,j=1

I(r − |v(i)− v(j)|. (2)

where I(t) is Heaviside function as described by the following
equation.

I(t) =

{
1 (t ≥ 0)
0 (t < 0)

(3)

A graph of the relationship between the logarithm of the
correlation integral and distance when the embedding dimen-
sion m is varied from 2 to 10 is shown in Fig. 6.

(a) DIV 15.

(b) DIV 20.

(c) DIV 30.

Fig. 6. Relationship between correlation integral and distance.

Next, the slope V (m) is calculated from the graph in Fig. 6
and the relationship between the slope and the distance is
shown in in Fig. 7. In general, the fractal dimension can be
estimated from this graph. However, we can confirm that there
are no clear scaling regions in any case of DIV. In particular, in
the case of DIV15, the graph changes linearly as m increases.
In the case of DIV 20 and 30, we can see how V (m) is trying
to converge in a certain region of log r. In addition, the region
where it is trying to converge is wider for DIV30.
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From these results, it was not possible to derive fractal
dimension values with the neuron signals used in this study.
However, Fig. 7 suggests that the self-similarity feature in-
creased as the number of days passed from DIV 15 to 30. In
the future, we would like to propose a method to calculate
these features.

(a) DIV 15.

(b) DIV 20.

(c) DIV 30.

Fig. 7. Fractal dimension.

V. DISCUSSION

In addition to self-similarity, chaos is characterized by the
Lyapunov exponent as a dynamic feature. In a previous study
we measured the Lyapunov exponent of neuronal signals and
confirmed that all neuronal signals exhibit positive values, i.e.,
chaos [4]. In this study, the Lyapunov exponent was also
calculated for the 3-minute neuron signal. The results are
shown in the following table. As before, we confirmed that
the Lyapunov exponents were positive in all cultures and that
the Lyapunov exponents became smaller as the number of days
passed.

TABLE I
LYAPUNOV EXPONENT.

Neuron type λ

DIV 15 3.89
DIV 20 3.38
DIV 30 2.76

The fractal dimension and Lyapunov exponent results indi-
cate that the neuronal signal increases in self-similarity and
weakens in orbital instability with growth.

VI. CONCLUSION

In this study, we investigated the characteristics of nonlin-
earity using attractor reconstruction and fractal dimension on
actual neuronal signals. From the result of the attractor recon-
struction, we confirm that young neurons are more complex
and older neurons have grown to have some structure. The
same can be said of the fractal dimension results. In other
words, for young neurons (DIV 15), there were no scaling
regions at all in the fractal dimension graphs, whereas for DIV
20 and 30, regions of attempted convergence were observed.
However, the present approach did not provide a quantitative
assessment of the chaotic properties of the neuronal signals.

As future work, we will apply the attractor reconstruction
and fractal dimension to other cultures as well, since we were
only able to apply it to one culture this time. We would
like to propose a nonlinear method to clarify how chaotic
characteristics of neuronal signals change with the growth
process of the brain.
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