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Abstract—Complex networks have attracted a great deal of
attention in recent years. Because they have many properties
that are relevant to real-world networks. This has been studied
a lot in terms of network topology and interactions between
nodes. However, most of these studies have analyzed networks
by coupling strength is kept constant between nodes for all
connections. In this study, we focus on the Euclidean distance
between nodes to weight the connections. Coupling strength is
determined by it. Two networks, a random network and a scale-
free network, were constructed by using 100 oscillators. These
networks were analyzed in terms of synchronization phenomena.
As a result, it was confirmed that the synchronization phenomena
in the two networks is significantly different when the coupling
strength is determined by Euclidean distance.

I. INTRODUCTION

Complex networks have the properties of real-world net-
works: scale-free, small-world, and clustered. They can be
represented in graph theory and modeled by nodes and edges.
Examples of these relationships are human relationships, trans-
portation networks, neural networks and the Internet. Complex
networks have received much attention in various fields such as
sociology, biology and engineering. Furthermore, in the field
of engineering, complex networks using circuits have been
studied, and interesting phenomena such as synchronization
between circuits have been observed [1]. Synchronization is
one of the most familiar phenomena that exist in nature.
It is a phenomena in which nonlinear systems that have
been moving separately interact with each other and become
aligned. Synchronization phenomena in complex networks
have been studied in the past. These studies have focused
on the topological structure of the network and investigated
various synchronization phenomena caused by differences in
the topological structure [2]. From the results of these studies,
it was confirmed that the topological structure of the network
influences the synchronization. However, most of these studies
have examined synchronization phenomena in networks where
the coupling strength is kept constant for all the connec-
tions [3]. Therefore we investigate how the synchronization
phenomena differ when the coupling strength is considered as
the Euclidean distance of each coupled part depending on the
node arrangement.

In this study, two network models with different properties
are constructed using 100 oscillators. For each network, the
node configuration is placed on the two-dimensional space and
the Euclidean distance is derived to set the coupling strength.
The synchronization between the nodes of the coupled part is
investigated by the computer simulations.

II. NETWORK MODELS

In this study, we use two network models, Barabási Albert
model (BA model) [4] and Erdős Rényi model (ER model) [5].
The number of nodes is 100 and the average degree of each
network model is set to be close to 4.0. Since the Euclidean
distance between nodes determines the coupling strength,
these two network models are constructed with fixed node
configurations.

First, Fig. 1 shows the BA model, a model for scale-
free networks used in this study. This network has properties
called network growth and preferential selection, which is
the property that hubs are created as new nodes are easily
connected to nodes with higher degree. Furthermore, since
the degree distribution follows a power law, a small number
of nodes are connected to many other nodes and have a large
degree, while many other nodes are connected to only a small
number of nodes.

Fig. 1. BA model.

Next, Fig. 2 shows the ER model, a model for random
networks used in this study. In this network, all pair nodes
are connected with the same probability. Furthermore, since
the degree distribution follows a binomial distribution, the
majority of nodes have a degree close to the average degree.
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Fig. 2. ER model.

III. SYSTEM MODEL

Figure 3 shows a van der Pol oscillator. This oscillator is
a simple circuit, consisting of only a capacitor, an inductor
and a nonlinear element. This circuit is considered as a single
node. By connecting these circuits with resistors, edges are
created to form each network.
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Fig. 3. van der Pol oscillator.

The circuit equation is described as follows:
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Here, the parameter ig is the equation of the nonlinear element,
and described as follows:

ig = −g1v + g3v
3. (2)
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follows:

v =

√
g1
g3

x, i =

√
g1C

g3L
y, t =

√
LCτ

ε = g1

√
L

C
, γ =

1

R

√
L

C
.

The normalized circuit equation described as follows:
dxn

dτ
= α

εxn(1− x2
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100∑
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Enkγnk(xn − xk)


dyn
dτ

= xn

(n, k = 1, 2, · · ·, 100).

(3)

Here, The parameter of the van der Pol oscillator is set
to ε = 0.1. Moreover α represents the small error of the
capacitor. The results of the synchronization rate in the two
network models are shown in the range of [0.95:1.05] in
increments of 0.001. Further, Enk represents the adjacency
matrix of the network. This is a matrix that indicates whether
node n and node k are connected or not. Enk = 1 if node
n and node k are connected, and Enk = 0 if they are not
connected.

The coupling strength γnk is determined by using the
parameter q as follows:

γnk =
1

Rnk

√
L

C
=

q

dnk
2 . (4)

The parameter q is the weight of parameter that determines
the coupling strengths [6]. In this case, we set parameter q =
0.01.

IV. RESULTS

In order to investigate the synchronization phenomena in the
coupled parts, we define the synchronization between circuits
as follows:

|xn − xk| < 0.01. (5)

Where n and k are the number of circuits. Figure 4 shows
the differential voltage waveform observed in this study. The
two lines in Fig. 4 represent the threshold value shown in
Eq. (5). When the voltage difference meets this threshold, the
circuits are considered to be synchronized. This is the voltage
difference in the range of τ = 10000 to τ = 20000 where the
system settles into a steady state, and the synchronization rate
is calculated under these conditions.
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Fig. 4. The differential voltage waveform.

First, Fig. 5 shows the relationship between the synchro-
nization rate and the number of pair nodes when the common
coupling strength is kept constant for the BA model and ER
model. Here, the coupling strength is set to γ ≃ 0.3276.
Table I shows the average synchronization rate for each
network under these conditions.
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Fig. 5. Relationship between the synchronization rate and the number
of pair nodes in the BA model and ER model with the same coupling
strength.

TABLE I
AVERAGE SYNCHRONIZATION RATES OF TWO NETWORK

MODELSWITH THE SAME COUPLING STRENGTH.

Network BA model ER model
Average synchronization rates[%] 77.674 81.074

Next, Fig. 6 shows the relationship between the synchro-
nization rate and the number of pair nodes when the coupling
strength is determined by Euclidean distance between nodes
for the BA model and ER model using Eq. (4). Table II also
shows the average synchronization rate of each network under
these conditions.
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Fig. 6. Relationship between the synchronization rate and the number
of pair nodes in the BA model and ER model determined by
Euclidean distance.

TABLE II
AVERAGE SYNCHRONIZATION RATES OF TWO NETWORK MODELS.

Network BA model ER model
Average synchronization rates[%] 50.811 28.346

Finally, Fig. 7 and Fig. 8 show the results to compare
the case of coupling strength kept constant at the average
value obtained from Eq. (4) with the case of coupling strength
determined by Euclidean distance for the BA model and ER
model. Here, the average coupling strength is γ ≃ 0.2816 for
the BA model and γ ≃ 0.3736 for the ER model. Table III
and Table IV shows the average synchronization rate of each
network under these conditions.
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Fig. 7. Relationship between the synchronization rate and the number
of pair nodes in the BA model with the coupling strength determined
by Euclidean distance and constant (average).
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Fig. 8. Relationship between the synchronization rate and the number
of pair nodes in the ER model with the coupling strength determined
by Euclidean distance and constant (average).
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TABLE III
AVERAGE SYNCHRONIZATION RATES FOR DIFFERENT METHODS

OF DETERMINING THE COUPLING STRENGTH OF BA MODEL.

Coupling strength Determinded Constant
by distance (average)

Average synchronization rates[%] 50.811 72.425

TABLE IV
AVERAGE SYNCHRONIZATION RATES FOR DIFFERENT METHODS

OF DETERMINING THE COUPLING STRENGTH OF ER MODEL.

Coupling strength Determinded Constant
by distance (average)

Average synchronization rates[%] 28.346 84.425

Figure 9 shows the relationship between the synchronization
rate and the number of pair nodes when the coupling strength
is determined by Euclidean distance for (a) BA model and (b)
ER model.
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Fig. 9. Coupling strength distribution.

First, we compare the network structure of the two networks
used in this study. If we keep the common coupling strength
constant, we can see from Fig. 5 and Table I. There is no
significant difference in the distribution of the synchronization
rate and the average synchronization rate.

As a result, we compare the networks when the coupling
strength is determined by Euclidean distance. Figure 6 shows
that the BA model has the largest number of node pairs with
a synchronization rate of 90-100[%], while the ER model has
the largest number of node pairs with a synchronization rate of
0-10[%]. Table II also shows that about half of the nodes in the
BA model are synchronized, while only about a quarter of the
nodes in the ER model are synchronized, indicating that there
are significant differences among the networks. In addition,
when the coupling strength is kept constant for each network,
the distribution of the synchronization rate is higher for both
BA model and ER model, as shown in Fig. 7 and Fig. 8. Table
III and IV shows that the average synchronization rate is also
higher when the coupling strength is constant. This trend is
more pronounced in the ER model. The synchronization rate
of most pair nodes is 90-100[%] when the coupling strength
is constant, as shown in Fig. 8.

Further, Fig. 9 also shows that in both networks, there are
many pair nodes for which the distribution of the coupling
strength is lower than the average value. Accordingly, when

the coupling strength is determined by Euclidean distance,
the synchronization rate is much lower than when it is kept
constant at the average value.

V. CONCLUSION

In this study, 100 van der Pol oscillators were used to
investigate the synchronization phenomena for two networks,
the BA model and the ER model. Where the coupling strength
was considered as the Euclidean distance between nodes. The
results show that the synchronization rate of both networks
decreases when Euclidean distance is considered, compared
to the constant coupling strength. The decrease was smaller in
the BA model than in the ER model. This may be due to the
influence of the hub in the BA model.

In the future, we would like to further investigate the effect
of hubs and local node pairs such as indirectly coupled pairs.
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