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Abstract—In this study, we investigate synchronization phe-
nomena in coupled chaotic network including one ladder and five
ring structures. We set the bifurcation parameter of the circuits
to generate periodic solutions or chaotic solutions. The ladder
position is chaotic state and five ring positions are stable state.
By the computer simulations, we confirm that synchronization
state is switching in the model by changing bifurcation parameter.

I. INTRODUCTION

Synchronization in the network is one of the most inter-
esting fields from the scientific points. Investigation of the
synchronization is an important research for clarifying the
nonlinear phenomenon in the natural world, which has been
observed in various fields such as engineering, biology, and
sociology. The network also has characteristics with different
topologies. Therefore, it is important to investigate the dynam-
ics due to the difference in network structure, and research to
analyze each topology is underway [1]-[5].

On the other hand, synchronization in coupled chaotic
systems is a suitable model for describing various high-
dimensional nonlinear phenomena. Especially, in recent years,
many studies of chaotic phenomena using coupled chaotic
circuits have been conducted. Circuit experiments and com-
puter simulations of chaotic circuits with simple configurations
are considered to be suitable due to their high reproducibil-
ity. Investigation of nonlinear phenomena related to chaotic
phenomena will be an important issue in future engineering.
Networks using chaotic circuits are expected to be applied to
modeling of the natural world and social networks [6],[7].

Previously, our research group investigated the synchroniza-
tion phenomena observed in ladder coupled systems including
ring structures. We confirmed perfect synchronization and
chaotic synchronization in different network topologies [8]. In
this study, we investigate the synchronization phenomena of a
larger scale than the previous network model. We particularly
focus on the bridge positions that connect the ladder and
ring structures. Each coupled chaotic circuit sets parameters
for generating a chaotic solution or a periodic solution. By
computer simulation, we investigate the synchronization phe-
nomenon in each part by changing the bifurcation parameter

in the chaotic network. We also observe the switching effect
of synchronous stability in each part of the network.

II. NETWORK MODEL

In this study, we use chaotic circuits. The model of chaotic
circuit is shown in Fig. 1. This circuit consists of a negative
resistor, two inductors, a capacitor and dual-directional diodes.
This chaotic circuit is called Nishio-Inaba circuit [9].

Fig. 1. Chaotic circuit.

First, the circuit equations of this circuit are described as
follows: 
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The characteristic of nonlinear resistance is described as
follows:
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By changing the variables and parameters,
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The normalized circuit equations are given as follows:

dxi

dτ
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dyi
dτ
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dzi
dτ

= −x− βy.

(4)

f(yi) is described as follows:
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1

2
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In this study, we propose a network model with ladder-
coupled chaotic network including ring structure. Each chaotic
circuit is coupled by resistor. Figure 2 shows the proposed
network model.

We set the parameters that the ladder position composed
of CC1 to CC5 generates a chaotic solution, and the five
ring positions composed of CC6 to CC20 generate periodic
solutions.

By changing the variables and parameters,
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(6)

Fig. 2. Network model.

R is the resistor that couples each chaotic circuit.
The normalized circuit equations of the systems are given

as follows:

dxi

dτ
= αxi + zi

dyi
dτ

= zi − f(y)

dzi
dτ

= −xi − βyi −
N∑

i,j=1

γij(zi − zj)

(i, j = 1, 2, · · ·, N).

(7)

In Eq. (7), N means the number of coupling circuits,
γ is the coupling strength between circuits, and α is a
parameter indicating nonlinear degree. In this study, we set
the parameters of the system as β = 3.0 and δ = 470.0. For
the parameter α , the ladder part is set as α = 0.430 and
the ring part is set as α = 0.412. The coupling strength γ
is defined as a bifurcation parameter. The coupling strength
at the ladder and ring positions is set as γ = 0.2. In this
research, to investigation based on the combination of two
topological types of ladder structure and ring structure, we
simulate the synchronization by changing the positions of
bridge that couple between the two structures (for example,
the resistance that couples CC1 and CC6).

In this study, the periodic and chaotic solutions are judged
by attractors. Figure 3 shows each attractor when parameters
are set so that a three-period solution and a chaotic solution
are generated.

zi

xi

zi

xi
(a) Three periodic attractor. (b) Chaotic attractor.

Fig. 3. Attractors.

III. SIMULATION RESULTS

We investigate the synchronization state by the computer
simulation. In this study, we simulate the synchronization of
chaotic network by dividing the coupling strength of the bridge
part into three patterns of γ = 0.01, γ = 0.1, and γ = 0.2.
Voltage difference waveform between each circuit is used as
a method for confirming the synchronization state. When the
voltage difference is small, it is considered that each circuit is
performing the same output and synchronization is considered
to occur. When the voltage difference is large, it is considered
that each circuit outputs a different output and the state is
regarded as asynchronous.

First, Fig. 4 shows the results when the value of coupling
strength at the bridge is γ = 0.01, which is much weaker than
other coupling strength. In this case, as shown in Fig. 4(a),
we obtain the difference of each ring. As time advanced, the
position of synchronization or asynchronous state changes to
another place. On another front, Fig. 4(b) shows that the bridge
position is constantly asynchronous. The state is initially
asynchronous in Ring3, but we confirm that the asynchronous
position moved to Ring1 and Ring5 over time. Subsequently,
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the effect of switching the synchronization state on the rings
is repeated.

Next, Fig. 5 shows the result when the value of coupling
strength at the bridge is γ = 0.1. In this case, as shown in
Fig. 5(a), it is confirmed that chaotic propagation from the
ladder part to the ring part occur due to the stronger coupling
strength than γ = 0.01. We obtain chaotic synchronization
between all the rings in this situation. At the same time, we
also confirm that the chaotic circuit in the ring where the three
periodic attractor should occur become chaotic attractor due
to the influence of chaotic propagation. Additionally, Fig. 5(b)
shows that the state of bridge position becomes also the chaotic
synchronization.

Finally, Fig. 6 shows the results when the value of coupling
strength at the bridge is γ = 0.2. In this case, the connection
between the ladder part and ring position become stronger,
and the whole network was observed to be close to perfect
synchronization again. However, unlike γ = 0.01, where
perfect synchronization was observed earlier when γ = 0.2,
the timing at which perfect synchronization occurs in each ring
is a phenomenon in each part of the network. Taking Fig. 6
as an example, in the case of Ring1, a perfect synchronization
state is initially observed between CC6 and CC7, but the same
is observed between CC6 and CC8 as advanced time. The
state is switched, and when more time passed, it switches
between CC7 and CC8, and this behavior is repeated. It is
confirmed that the same behavior occur at each timing between
the rings.

Based on these results, it is confirmed that the synchro-
nization state at each location in the network switched by
changing the coupling strength of the bridge location, which is
a bifurcation parameter. However, regarding switching when
γ = 0.01, we could not confirm the regularity of the order
of the ring part where the asynchronous state changes in
this study. When it is considered that the voltage difference
propagates, in this result, it is thought that Ring2 and Ring4
that are adjacent to Ring3 would continue to be unstable, but
the results are different, so further investigation is necessary.

(a) Time advanced τ = 50000− 100000 in the rings.

(b) Time advanced τ = 150000− 200000 in the rings.

(c) Time advanced τ = 50000− 100000 in ladder and bridge.
Fig. 4. Voltage difference waveform as the bridge γ = 0.01.

(a) Voltage difference waveform in the rings.

(b) Voltage difference waveform near Ring1.
Fig. 5. Voltage difference waveform as the bridge γ = 0.1.
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(a) Voltage difference waveform in the rings.

(b) Voltage difference waveform near Ring1.
Fig. 6. Voltage difference waveform as the bridge γ = 0.2.

IV. CONCLUSIONS

In this study, we investigated the synchronization phe-
nomenon in a network composed of coupled chaotic circuits.
The network topology is a ladder coupled system including a
ring structure.

As a result of investigation by computer simulation, we ob-
served synchronization states such as chaotic synchronization
and perfect synchronization by changing the coupling strength
of the bridge part. In the case of γ = 0.01, the ladder position
and ring position are asynchronous. However in the case of
γ = 0.1 and γ = 0.2, coupling strength of bridge position is
more stronger, and the the ladder position and ring position
become synchronization.

Moreover, it was confirmed that the switching of the syn-
chronized state occurs by increasing the coupling strength of
the bridge. In the switching phenomenon, there is a difference
that the phenomenon in the whole network or the phenomenon
in one place in the network is seen due to the change of the
branching parameter.

In our future works, we investigate the order of the position
becoming asynchronous state in the case of γ = 0.01.
Furthermore, we analyze the dynamics of synchronization in
more intricate networks.
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