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Abstract

In this study, synchronization phenomena in coupled oscilla-
tors containing star structure connected to another oscillator
is investigated. We focus on the phase difference between two
oscillators when coupling strength is changed. By using com-
puter simulations, we observe synchronization phenomena of
the system and use theoretical analysis and circuit experiment
to confirm computer simulation results.

1. Introduction

We are living in the world where there are so many ex-
ample of synchronization: firefly luminescence, cry of birds
and frogs, human applause, etc. Synchronization phenom-
ena have a long history of researches and they have been
reported in many researches of engineering fields [1] - [2].
Furthermore, the applications of synchronization phenom-
ena have been also found in chemical, physical and biolog-
ical fields [3] - [4]. Synchronization phenomena in coupled
van der Pol oscillators are good models to describe various
higher-dimensional nonlinear phenomena in the field of nat-
ural science. However, in each one of them, van der Pol os-
cilators is either coupled by different method or has different
feature. Therefore, investigation of synchronization phenom-
ena observed in coupled oscillatory systems is an important
issue.

The van der Pol oscillator is a simple circuit as shown in
Fig. 1. It consists of an inductor, a capacitor and a nonlinear
resistor.

Figure 1: van der Pol oscillator.

In this study, we propose a new type of coupled van der Pol
oscillators: Star structure connected to another oscillator. By
carring out computer simulations and theoretical analysis, the
relationship of the model between synchronization phenom-
ena and coupling strength is investigated.

2. Circuit Model

The proposed circuit is shown in Fig. 2. We use three van
der Pol oscillators coupled as star structure that connected to
another oscillator via resistors r. We investigate synchroniza-
tion phenomena by changing coupling strength of the resis-
tors.

Figure 2: Circuit model.
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With vC1 vC2, vC3, and vC4 denote capacitor’s voltage and
iL1 iL2, iL3, and iL4 denote inductor’s electric current.

The circuit equations of VDP-A1 are given as folows:

C
dvC1

dt
= −ig1 − iL1 − iR1 − iR2 − iR3,

L
diL1

dt
= v1.

(1)

The circuit equations of Circuit-A2, Circuit-A3, Circuit-
A4 are given as follows:

C
dvCk

dt
= −igk − iLk + iRk,

L
diLk

dt
= vk −R

4∑
m=2

iLm.
(2)

where:

iRk =
v1 − vk

r
,

(k = 2, 3, 4).

The characteristics of the nonlinear resistors are defined as
follows:

igk = −g1vk + g3v
3
k. (3)

By changing the variables and parameters:

t =
√
LCτ, vk =

√
g1
3g3

xk,

iLk =

√
g1C

3g3L
yk, α = g1

√
L

C
,

β =
1

r

√
L

C
, γ = R

√
C

L
,

(4)

(k = 1, 2, 3, 4).

the normalized circuit equations of VDP-A1 are given as fol-
lows:

dx1

dτ
= α

(
x1 −

1

3
x3
1

)
− y1 − β

(
3x1 −

4∑
m=2

xm

)
dy1
dτ

= x1.

(5)
the normalized circuit equations of Circuit-A2, Circuit-A3,
Circuit-A4 are given as follows:

dxk

dτ
= α

(
xk − 1

3
x3
k

)
− yk + β(x1 − xk)

dyk
dτ

= xk − γ
4∑

m=2

ym,
(6)

(k = 2, 3, 4).

where parameters α, β, and the γ denote nonlinearity, the
resistors r, and the resistor R, respectively.

3. Simulation Results

For the computer simulations, we calculates Eqs. (2)-(3)
by using Runge-Kutta method with the step size h = 0.05.
When the parameters are fixed as α = 0.1,γ = 0.006, we
control synchronization phenomena of this circuit model by
changing the coupling strengths β2, β3, β4.

First, in the case of parameters β2, β3, β4 are set to 0.015,
Fig. 3 shows the attractor of each oscillator. Next, we sightly
increase the parameters β2, β3, β4 to the same value as 0.017,
all fours oscillators become in-phase as Fig. 4. When we
only change β2 to 0.005, the oscillator of Circuit A2 becomes
anti-phase with other oscillators, when we change β2, β3 to
0.0005, oscillator of VDP-A1 becomes in-phase with oscil-
lator of Circuit A2 and the oscillators of Circuit A2, A3, A4
become 3-phase synchronization. These results are shown in
Figs. 5-6.

Figure 3: Phase differences (β2 = β3 = β4 = 0.015).

Figure 4: Phase differences (β2 = β3 = β4 = 0.017).

Figure 5: Phase differences (β2 = 0.005, β3 = β4 = 0.015).

Figure 6: Phase differences (β2 = β3 = 0.0005, β4 = 0.015).

Figures 7, 8 and 9 show the computer simulation results in
each case when parameters β2, β3, β4 are changed in ranges
of values. From these result, we can control synchronization
phenomena of this system by changing coupling strengths.
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Figure 7: Phase differences in the case of changing β2.

Figure 8: Phase differences in the case of changing β2, β3.

Figure 9: Phase differences in the case of changing β2, β3, β4.

Therefore, we can control synchronization phenomena by
changing the coupling strengths.

4. Theoretical Analysis

In this section, we apply theoretical analysis to comfirm
above computer simulation results by using averaging method
for Eqs. (5) and (6). We assume that x1,k, y1,k can be consid-
erd as below:

x1,k(τ) = ρ1,k(τ) cos(τ + θ1,k(τ))
y1,k(τ) = ρ1,k(τ) sin(τ + θ1,k(τ)).

(7)

Assign Eqs. (5)-(6) to Eq. (7), we obtain:
VDP-A1:

.
ρ1 = α(x1 − 1

3x
3
1) cosϕ1 − y1 cosϕ1

−β(3x1 −
4∑

n=2
xn) cosϕ1 + x1 sinϕ1 ≡ X1

.

θ1 =
x1 cosϕ1

ρ1
−

α(x1 − 1
3x

3
1) sinϕ1

ρ1
+

y1 sinϕ1

ρ1

+

β(3x1 −
4∑

n=2
xn) sinϕ1

ρ1
− 1 ≡ Y1.

(8)

Circuit-A2, Circuit-A3, Circuit-A4:
.
ρk = α(xk − 1

3x
3
k) cosϕk − yk cosϕk

+β(x1 − xk) cosϕk + xk cosϕk

−γ
4∑

n=2
yn sinϕk ≡ Xk

.

θk =
xk cosϕk

ρk
−

α(xk − 1
3x

3
k) sinϕk

ρk
+

yk sinϕk

ρk

−
γ

4∑
n=2

yn cosϕk

ρk
− 1 ≡ Yk,

(9)

where

ϕk = τ + θk
(k = 2, 3, 4) .

By averaging Eqs. (8)-(9) over on period, as averaging
method’s theory, ρ1,k and θ1,k can be considered as constant
and the values of

.
ρ1,

.

θ1 can be calculated as:
VDP-A1:

.
ρ1 = lim

T→∞

T∫
0

X1dτ

.

θ1 = lim
T→∞

T∫
0

Y1dτ.

(10)

Circuit-A2, Circuit-A3, Circuit-A4:

.
ρk = lim

T→∞

T∫
0

Xkdτ

.

θk = lim
T→∞

T∫
0

Ykdτ.

(11)

By solving the above equations, Eqs. (10) and (11) are ob-
tained:

VDP-A1:

.
ρ1 =

1

2
αρ1 −

1

8
αρ1

3 + β
3

2
ρ1

+

4∑
n=2

1

2
βρn cos(θn − θ1)

.

θ1 =
1

2

4∑
n=2

ρn
ρ1

sin(θn − θ1).

(12)
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Circuit-A2, Circuit-A3, Circuit-A4:

.
ρk =

1

2
αρk − 1

8
αρk

3 +
1

2
βρ1 cos(θ1 − θk)

+
1

2
βρk −

4∑
n=2

1

2
γρn cos(θn − θk)

.

θk =
1

2

4∑
n=2

ρn
ρk

sin(θk − θn).

(13)

In the steady state,
.

ρ1,k = 0 and
.

θ1,k = 0 must be satisfield. By solving
Eqs. (12)-(13) we obtain:

ρk
ρ1

as solution of below equation:

3

2
βa4 +

(
1

2
α− 3

2
β

)
a3 −

(
1

2
α− 1

2
β − 3

2
γ

)
a− 1

2
β = 0.

(14)
For the phase difference:

θ2 − θ3 = θ3 − θ4 = θ4 − θ1 = 0.

These theoretical rersults correspond with the computer
simulation results. Table 1 summarizes the comparison be-
tween theoretical and simulation results when the parameters
α, γ are set as α = 0.05, γ = 0.006 and parameter β1,2,3 are
changed together to 0.018, 0.02, 0.05. By solving Eq. (14),
we can see that they match very well from below table.

Table 1: Comparison between theoretical and simulation re-
sults (α = 0.05, γ = 0.006).

ρk/ρ1
β Theory Simulation

0.018 0.885291 0.885314
0.02 0.890631 0.890658
0.05 0.936092 0.936131

5. Circuit Experiments

In this section, we build a real circuit to comfirm these re-
sult above. We set L = 20[mH], C = 33[nF] for each oscillator
and change value of r. We also obtain the same synchroniza-
tion from the circuit experiments. Figure 10 shows the result
of oscillator 1, 2, 3 (Oscillator 2 is anti-phase). Figure 11
shows the result of oscilator 2, 3, 4. Figure 12 shows the
result of oscillator 1, 2, 3.

Figure 10: Circuit experiment for r2 = 47[kΩ], r3 = r4 = 2[kΩ].

Figure 11: Circuit experiment for r2 = r3 = 82[kΩ], r4 = 2[kΩ].

Figure 12: Circuit experiment for r2 = r3 = r4 = 2[kΩ].

6. Conclusions

In this study, we have investigated the synchronization phe-
nomena in coupled oscillators containing star structure con-
nected to another oscillator, and observe its synchronization
phenomena by theoretical analysis, computer simulation and
circuit experiment. In the next step, it is necessary to increase
the number of oscillators and complete the theoretical analy-
sis, and it is expected to bring us more interesting phenomena
and we can find a good solutions for larger coupled systems.
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