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Abstract—In this study, we investigate the spread of chaotic
behavior in switching ring network topology. We propose ring
network model by coupled chaotic circuits. In proposed network
model, one circuit is set to generate chaotic attractor and the
other circuits are set to generate three-periodic attractors. By
using computer simulations, we investigate the chaos propagation
by changing the switching coupling patterns. From the simulation
result, the chaos propagation depends on the previous switching
pattern.

I. INTRODUCTION

We have various types network in our society. Most of
networks can be represented as a graph by nodes and edges.
Moreover, the network model has various types of feature
quantities. Examples of feature quantities are path length, de-
gree distribution and clustering coefficient. However, network
model become more large scale and complicated network.
These network model is called by “complex networks” .
Recently, complex networks have attracted a great deal of
attention from various fields since the discovery of “small-
world” network [1] and “scale-free” network [2]. As
with the complex networks, various types of propagation in
complex network have attracted a great deal of attention
from various fields. For example, friendship in social network,
neural activities with information processing in human brain
network and the pandemic outbreak of viral infection in
biology. Therefore, we consider that we can analyze various
complicated phenomena of complex networks by investigating
the spread of chaotic behavior. Additionally, it is important
to investigate propagation phenomena observed from coupled
chaotic circuits for future engineering applications.

In our research group, we have investigated the spread of
chaotic behavior in various type networks. Various research
results of spread of chaotic behavior in static network model
have been reported by using coupled chaotic circuits [3]. In
this study, we confirmed that the three-periodic attractors are
affected from the chaotic attractors when the coupling strength
increases. In scale free network, we confirmed that chaos
propagation is more difficult when we set the initial chaos
position in high degree node. Additionally, we have compared
scale free and random network for investigation spread of

chaotic behavior [4]. Even though we increase the value
of degree in initial chaos position, the ratio of propagation
changes only a little. In detail of this result, we explain this
result in section (IIL).

However, these previous study have been reported by static
network model. Therefore it is necessary to investigate the
spread of chaotic behavior in dynamic network model. Ex-
ample of dynamic network model is temporal networks [5].
Figure 1 shows the example of temporal networks. In addition,
various research of propagation by using temporal networks
have been reported by many researchers [6].
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Fig. 1. System model of temporal networks.

In this study, we propose ring network model by 10 coupled
chaotic circuits. In ring network of initial state, we fixed that
one circuit is set to generate chaotic attractor and the other cir-
cuits are set to generate three-periodic attractors. Additionally,
we switch the network topology such as temporal networks.
We propose two different switching coupling patterns. We
define these patterns that we cut two edges at every switching
time. In these conditions, we investigate the spread of chaotic
behavior in switching ring network topology.

II. CIRCUIT MODEL

The chaotic circuit is shown in Fig. 2. This circuit consists
of a negative resistor, two inductors, a capacitor and dual-
directional diodes. This chaotic circuit is called Nishio-Inaba
circuit.

The circuit equations of this circuit are described as follows:
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Fig. 2. Chaotic circuit.
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In Eq. (4), N is the number of coupled chaotic circuits and
~ is the coupling strength. f(y;) is described as follows:
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In Eq. (4), N is the number of coupled chaotic circuits
and ~ is the coupling strength. We define . to generate the
chaotic attractor (see Fig. 3(a)) and o, is defined to generate
the three-periodic attractors (see Fig. 3(a)). For the computer
simulations, we calculate Eq. (4) using the fourth-order Runge-
Kutta method with the step size h = 0.01. In this study, we
set the parameters of the system as . = 0.460, oy, = 0.418,
B = 3.0 and § = 470.0.
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(a)Chaotic attractor

(b)Three-periodic attractor

Fig. 3. Attractor.

ITI. STATIC NETWORK MODEL IN PREVIOUS STUDY [4]

In this section, we investigate the ratio of propagation in
static complex model.

A. System model

Figures 3 and 4 show the proposed different type network
models in our previous study [6]. The characteristic of Model-
A is the scale-free network topology. The characteristic of
Model-B is the random network topology. In each model,
each chaotic circuit is coupled by one resistor R. We use
25 coupled chaotic circuits and 34 resistors in each network
model. Moreover, these proposed network model is static
network model.

Figure 5 shows degree distribution of each network. In this
graph, the vertical axis denotes the number of nodes and the
horizontal axis denotes the value of degree.
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Fig. 6. Degree distribution of each network..
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B. Simulation result

We investigate the ratio of propagation when we change the
value of degree in the initial chaos position according to degree
distribution. Moreover, in scale-free and random networks, we
compare their differences of simulation results. For example,
in model-A, when the value of degree k in the initial chaos
position is 4, we set the chaotic attractor in 9th or 13th node.
Also, in model-B, when the value of degree k in the initial
chaos position is 4, we set the chaotic attractor in 9th or 17th
node.

The simulation results of ratio of propagation according to
degree distribution are shown in Figs. 6 and 7.

Furthermore, we average the ratio of propagation in each
node under the same condition. In addition, we investigate the
ratio of propagation in the static state when we fix coupling
strength as v = 0.001,0.005. Here, we define the ratio of
propagation as number of chaotic circuits of whole network
at steady state.
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Fig. 7. Ratio of propagation according to degree distribution in Model-
A (scale-free network).
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Fig. 8. Ratio of propagation according to degree distribution in Model-
B (Random network).

From the result, in scale-free network, chaos propagation
become to more difficult, when we increase the value of
degree in initial chaos position. On the other hand, in random
network, even though we increase the value of degree in initial
chaos position, the ratio of propagation changes only a little.

IV. DYNAMIC NETWORK MODEL
In this section, we investigate the spread of chaotic behavior
in dynamic model.
A. Switching coupling pattern

Figure 9 shows the proposed ring network model in this
study. In the proposed model, each chaotic circuit is coupled
by one resistor R. We use 10 coupled chaotic circuits and 10
edges.
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Fig. 9. Ring network model.

We propose two different switching coupling patterns in
Fig. 10. In this study, we change the switching coupling
patterns at every 7 = 10,000. Moreover, in every switching,
we cut the two edges.

In pattern-A, all edges are cut form 7 = 0 to 7 = 10, 000.
Next switching, we cut two edges from 4th to 5th node and
from 7th to 8th node. Next switching, we cut two edges from
5th to 6th node and from 6th to 7th node. Finally, we cut two
edges from 4th to Sth node and from 7th to 8th node.

In pattern-B, all edges are cut form 7 = 0 to 7 = 10, 000.
Next switching, we cut two edges from 3rd to 4th node and
from 8th to 9th node. Next switching, we cut two edges from
5th to 6th node and from 6th to 7th node. Finally, we cut two
edges from 3rd to 4th node and from 8th to 9th node.

B. Simulation results

We investigate the chaos propagation by changing the
switching coupling patterns. In the initial states of each pattern,
one circuit is set to generate chaotic attractor and the other
circuits are set to generate three-periodic attractors. We set the
initial chaos position in 6th node and the other node is fixed
as three-periodic state. In addition, we investigate the chaos
propagation in the static state when we fix coupling strength
as v = 0.010. Figure 11 shows the appearances how to spread
from three-periodic state to chaotic state when we change the
switching coupling according to pattern-A. Moreover, Fig. 12
shows the appearances how to spread from three-periodic
attractor to chaotic attractor when we change the switching
coupling according to pattern-B.
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Fig. 10. Switching coupling pattern at every 7 = 10, 000.
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Fig. 11. spread of chaotic behavior in pattern-A.
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Fig. 12. spread of chaotic behavior in pattern-B.
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From each simulation result, we have observed the chaos
propagation. In switching time from 7 = 10,000 to 7 =
20,000, in each switching pattern, each three-periodic at-
tractors which is connected to 6th node are changed to
chaotic state by the influence of 6th node. In pattern-A from
7 = 20,000 to 7 = 30,000, 5ht and 7th node change to
three-periodic state because the edges from 5th to 6th node
and from 6th to 7th node are cut. However, in pattern-B from
7 = 20,000 to 7 = 30,000, despite the fact that the both
side edges of 6th node do not connect to other nodes, we
observed that three-periodic state node change to chaotic state.
Moreover, in switching time from 7 = 30,000 to 7 = 40, 000
of pattern-B, only 4th, 5ht, 7th and 8th node keep at chaotic
state because the both side edges of 5Sht, 6th and 7th node are
connected.

V. CONCLUSIONS

In this study, we have investigated the spread of chaotic
behavior in switching ring network topology by coupled
chaotic circuits. By the computer simulations, we confirmed
that the three-periodic state is affected from the chaotic state.
Moreover, we have observed the spread of chaotic behavior
by the influence of switching pattern. From the simulation
result, we consider that the spread of chaotic behavior depends
on previous switching coupling pattern. Even if the edge
temporarily connect to other nodes, it is assumed that we
observe the chaos propagation by changing the switching
coupling pattern.

For the future works, we propose the different switching
pattern such as random or systematic. Furthermore, we in-
vestigate the spread of chaotic behavior when we change the
switching coupling patterns at every more short 7.
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