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Abstract—In 2011, Senthilnath et al. proposed to utilize the
Firefly Algorithm for K-means clustering. The algorithm has
shown better results than the standard K-means algorithm or
other combinations with bio-inspired optimization heuristics. In
this study, we propose a further improvement of the method,
based on an improved firefly algorithm. As a key aspect, the
randomization parameter in our proposed algorithm is changed
when the assignment does not change. We compare the standard
K-means algorithm, K-means using the conventional Firefly
Algorithm and our proposed algorithm on the basis of a simple
data distribution. Numerical experiments show that our proposed
algorithm is more efficient than the other algorithms.

I. INTRODUCTION

Clustering is a popular data analysis technique used for
data analysis, image analysis, data mining and the other fields
of science and engineering. The goal of clustering is to find
homogeneous groups of data points in a data set. Each group
is called a cluster and is characterized by the fact that objects
that belong to the same group are more similar than objects
that belong to different groups. The K-means algorithm is
one of the most famous clustering methods. It is used if
the number of clusters is known and the clusters tend to be
spherical. The goal of the method is to find K cluster centers
and assign each object to the closest cluster center such that
the sum of the squared distances between the objects and the
corresponding cluster centers is minimal. This means that the
K-means clustering problem is an optimization problem.

Senthilnath et al. proposed an algorithm that used the firefly
algorithm for K-means clustering (KMFA) [1]. Numerical
experiments have indicated that this algorithm is more efficient
algorithm than the standard algorithm or other optimization
heuristics. The Firefly Algorithm (FA) has been proposed by
Yang in 2007 and is based on the idealized behavior of the
flashing characteristics of fireflies [2]. FA is an efficient opti-
mization algorithm because it has a deterministic component
and a random component. Almost all algorithms having only
the deterministic component are local search algorithms, for
which there is a risk of being trapped in a local optimum.

However, the random component makes it possible to escape
from such a local optimum.

In our previous study, we proposed a new clustering
algorithm that combines K-means clustering and improved
Firefly Algorithm (KMIFA). In our proposed algorithm, one
parameter is changed when the assignment does not change
[3]. We compared the conventional K-means algorithm, KMFA
and our proposed algorithm KMIFA using a 2-dimensional toy
data model. These experiments indicated that our algorithm
is more efficient than the other algorithms. However, for 3-
dimensional toy data model this algorithm cannot obtain a
better results than other algorithms. We improved the transition
rule of one parameter. Our proposed algorithm has new two
parameters. In the previous studies, we carried out computer
simulations with fixed parameters. Therefore, in this study, we
simulate a various patterns of this two parameters and intestate
their effects.

II. THE CONVENTIONAL METHODS

In this section, we explain the conventional K-means algo-
rithm and the Firefly Algorithm (FA).

A. K-means algorithm

The objective function of K-means clustering is defined by

J =
K∑

k=1

N∑
n=1

bkn|ck − on|2, (1)

where K is the number of cluster centers, N is the number of
objects, ck is the position vector of cluster center k and on

is the position vector of object n. Each object is assigned to
its nearest center. Hence bkn = 1 if object n is assigned to
center k and bkn = 0 otherwise:

bkn =

{
1, object n is assigned to center k

0, otherwise
(2)

This optimization problem is solved using the K-means
algorithm which is composed of the following four steps:

- 19 -

IEEE Workshop on Nonlinear Circuit Networks
December 15-16, 2017



Algorithm 1 The conventional Firefly Algorithm
Objective function f(x), x = (x1, ..., xd)

T

Initialize a population of fireflies xi(i = 1, 2, ..., n)
while t < MaxGeneration do

for i = 1 to n, all n fireflies do
for j = 1 to n, all n fireflies do

Light intensity Ii at xi is determined by f(xi)
if Ii > Ij then

Move firefly i towards j in all d dimensions
end if
Attractiveness varies with distance r via exp[−γr]
Evaluate new solutions and update light intensity

end forj
end fori
Rank the fireflies and find the current best

end while
Postprocess results and visualization

1) Initialize all cluster centers and objects: The number of
cluster centers and all objects are predefined. All cluster
centers are randomly initialized in the search space.

2) Assignments: Each object is assigned to only the closest
cluster center.

3) Calculates cluster centers: The places of each cluster
center move to the mean of each group object.

4) Iterate steps 2 and 3 until the assignments no longer
change.

B. The Conventional Firefly Algorithm (FA)

FA has been developed by Yang and it was based on the
idealized behavior of the flashing characteristics of fireflies
[2]. Many researchers have paid attention to FA [4], [5]. The
conventional FA idealizes these flashing characteristics using
the following three rules:

• All fireflies are unisex so that one firefly is attracted to
other fireflies regardless of their sex.

• Attractiveness is proportional to brightness; thus, for
any two flashing fireflies, the less brighter one will
move towards the brighter one. Both the attractiveness
and brightness stared above decrease as their distance
increases. If no one is brighter than a particular firefly, it
moves randomly.

• The brightness or light intensity of a firefly is affected or
determined by the landscape of the objective function to
be optimized.

The attractiveness of a firefly β is defined by

β = (β0 − βmin)e
−γr2ij + βmin, (3)

γ =
1√
L
, (4)

Algorithm 2 KMFA
Initialize a population of fireflies xi(i = 1, 2, ..., Nf )
Initialize a cluster centers ck(k = 1, 2, ..., Nc)
Initialize a objects on(n = 1, 2, ..., No)
while t < MaxGeneration do

Each object is assigned the closest cluster center
calculate Ji(i = 1, 2, ..., Nf)
Light intensity Ii is determined by Ji
if Ii > Ij then

Move firefly i towards j
end if
Find the current best

end while
Postprocess results and visualization

L =
|Xmax −Xmin|

2
, (5)

where γ is the light absorption coefficient, βmin is the mini-
mum value of β, β0 is the attractiveness at rij = 0, and rij
is the Euclidian distance between any two fireflies i and j at
xi and xj . L means the average scale for the problem. The
movement of the firefly i is attracted to another more attractive
firefly j, and is determined by

xi = xi + β(xj − xi) + αϵi, (6)
ϵi = (random()− 0.5)L, (7)

where xi is the position vector of firefly i, random() is a
uniform random number distributed in [0, 1] and α(t) is the
randomization parameter. The parameter α(t) is defined by

α(t) = α(0)

(
10−4

0.9

)t/tmax

, (8)

where t is the number of iteration.
Algorithm 1 shows the pseudo code of the conventional FA

for minimum optimization problems.

III. K-MEANS CLUSTERING WITH FA (KMFA)

For KMFA, the position vector xi of a firefly i corresponds
to (c1, c2, ..., cK). That is, each firefly contains the positions
of all cluster centers. The attractiveness of each firefly is
defined by the objective function (Eq. (7)). Numerical ex-
periments have indicated that this algorithm is more efficient
than the K-means algorithm and other algorithms for typical
benchmark data sets [1].

Algorithm 2 shows the pseudo code of KMFA.

IV. K-MEANS CLUSTERING USING THE IMPROVED FA
(KMIFA)

The K-means algorithm and KMFA sometimes converge
to a local minimum. Therefore, the purpose of this study is
to remove this disadvantage. In our proposed algorithm, each
firefly has its own value of α(t):

α(t) = λi

(
10−4

0.9

)t/tmax

, (9)
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TABLE I
INFORMATION ABOUT DATA TOY MODEL USED

cluster ideal center object number ball of radius
1 (50, 50, 70) 50 15
2 (20, 20, 40) 30 10
3 (20, 80, 40) 30 10
4 (80, 20, 40) 30 10
5 (80, 80, 40) 30 10
6 (50, 50, 40) 20 5

where λ is a new parameter. We set all value of λ to the same
certain value λ0 when initializing the population of fireflies
and define the minimum value of λ is 0. We do not define
the maximum value of λ, which means λ could increase to
infinity. The value of λ changes if the assignment changes or
not.

λnew
i =

{
λi − θ1, the assignment doesn′t change

λi + θ2, the assignment changes
(10)

where θ1 and θ2 are a predefined parameter. In the case of a
firefly i, if the assignment of all objects does not change, the
value of λi decreases. On the other hand, if the assignment
of all objects changes, the value of λi increases. In the case
of λ >> 0, a firefly moves with a relatively strong random
influence. This makes the firefly easier to escape from a local
minimum. In the case of λ = 0.0, a firefly does not move
randomly, which leads to a faster convergence. Therefore, the
concept of our proposed algorithm is at the beginning of the
search, fireflies easily escape from local optima. Then, as the
number of iteration increases, fireflies tend to converge.

V. NUMERICAL EXPERIMENTS

We compare the conventional K-means algorithm, KMFA
our proposed method KMIFA using a simple data toy model.
Information about that model is summarized in Tab. I and that
model is depicted in Fig. 1. The number of dimensions is 3,
the range of each dimension is [0, 100], the number of clusters
is 6 and the number of total objects is 190. The data objects
were generated randomly around the ideal centers within each
ball of radius. We used all the same data set in each numerical
experiment. Each numerical experiment was run 500 times
and we compared the success rate of each algorithm, where
the success rate is defined as the fraction of objects that are
assigned to the correct cluster:

Success Rate[%] =
Success[times]

500
× 100. (11)

Figure 2 shows the numerical experiment results in the
case of θ1 = 0.1 and θ2 = 0.1. We assume that our
proposed algorithm is more efficient algorithm than the other
two algorithms. For our proposed algorithm, the success rates
are almost same as those of KMFA when λ0 is more than 1.5.
As λ0 decreasing from 1.5, the success rates of our proposed
algorithm are gradually increasing. On the other hand, As λ0

decreasing from 1.5, the success rates of KMFA remind flat
to 0.5, then, those rapidly decrease.

(a) x vs y.

(b) x vs z.

(c) y vs z.

Fig. 1. Toy data model.

Fig. 2. Numerical experiment result.

Next, we change the value of θ1 and θ2. First, we fix the
value of θ1 at 0.1 and change θ2 from 0.1 to 0.3 (see Fig. 3).
Figure 3 shows the value of θ2 is suitable for our proposed
algorithm. The graph of our proposed algorithms gradually
increase with the same slope. However, as the value of θ2
increasing, the success rate decreases.

Then, we fix the value of θ2 at 0.1 and change θ1 from 0.1
to 0.3 (see Fig. 4). We assume that the success rate does not
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Fig. 3. Numerical experiment result changing θ2.

Fig. 4. Numerical experiment result changing θ1.

depend on the value of θ2.
Figure 5 shows the transition of λ when λ0 is 0.3. Each line

means the value of λ of each firefly. The transition is like a
mountain. Until the number of iterations is about 30, λ of all
fireflies increase. From the number of iterations is about 60,
λ of all fireflies decrease. Between 30 and 60, each firefly has
a different λ value.

Figure 6 shows the transition of α when λ0 is 0.3. Each
solid line means the value of α of each firefly on KMIFA
and broken line means the value of α of fireflies on KMFA.
There are two difference points of the transition of α between
KMFA and KMIFA. One is that the value of α increases from
the beginning of the search. Another is that the value of α of
each firefly is different in the middle of searching.

VI. CONCLUSION

In this study, we have proposed a new clustering algorithm
that utilizes an improved firefly algorithm for K-means cluster-
ing. Our algorithm is based on the idea that the randomization
parameter is changed when the assignment changes or not.
In our proposed algorithm, at the beginning of the search, all
fireflies move with a relatively strong random influence. Hence

they can more easily escape from a local minimum. As the
number of iterations increases, the firefly tend to converge.
Numerical experiments have indicated that our proposed algo-
rithm is more efficient than the other algorithms.

The study is based on a relatively simple toy data set. In
our future work, we will study more complex problems. In
addition, we will study more various transition.

Fig. 5. The tradition of λ when λ0 = 0.3.

Fig. 6. The tradition of α when λ0 = 0.3.
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