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Abstract—In this paper, we propose an array interpolation and
spatial smoothing based modified Capon beamforming method,
where the arbitrary linear array is transformed to a virtual uni-
form linear array (ULA) by utilizing the interpolation technique,
and then the coherency of incident signals can be decorrelated
by employing the spatial smoothing preprocessing. Further by
increasing the power of array covariance matrix, a modified
Capon beamformer is used to estimate the DOAs, where the
component corresponding to the signal subspace is suppressed.
We analyze the computational complexity of our method with
MUSIC method and illustrate the low complexity of our mehtod.
The proposed method estimates the direction-of-arrivals (DOAs)
of coherent narrowband signals in an arbitrary linear array
with high accuracy and low complexity. The effectiveness of the
proposed method is verified through numerical examples.

I. INTRODUCTION

In sensor array processing, many DOA estimation methods
were proposed in the literature (see, e.g., [1], [2], [3], [4]
and references therein), where the subspace-based methods
and the beamforming techniques are widely used because of
their simplicity. The beamforming is one of the oldest ideas
for DOA estimation, and perhaps the most well-known one
is the Capon beamformer [5], where the DOAs are estimated
by maintaining a constant gain at the incident directions of
desired signals and minimizing the power contributed by noise
and interference signals. The properties of Capon beamformer
was studied in [6], [7], and the Capon method can be applied
to the array with arbitrary geometrical configurations and has
low computational complexity compared with the subspace-
based DOA estimation methods such as the MUSIC [8], where
the computationally tremendous eigendecomposition is not
required. Further, it was clarified that the resolution of the
Capon beamformer can be equal to that of MUSIC when the
SNR tends to infinite [9], whereas the performance of Capon
beamformer degrades significantly when the signal to noise
ratio (SNR) is low. Moreover, the array is usually subject to
great uncertainty in practice.

In this paper, we consider the DOA estimation of the coher-
ent narrowband signals impinging on an arbitrary linear array.
In [10], we proposed a new computational efficient modified
Capon beamforming method and in this paper, we analyze
the computational complexity of our mehtod and compared it

with MUSIC method1. The proposed method overcomes the
common restriction of ULA geometry and becomes suitable
for more general array geometry than ordinary methods, while
the resolution of DOA estimation is improved to be as good
as that of the subspace-based methods such as the MUSIC,
where the computationally burdensome eigendecomposition is
avoided. Finally the simulation results show that the proposed
method performs well at low SNR.

II. PROBLEM FORMULATION

We consider an arbitrary linear array composed of M iden-
tical and omnidirectional sensors and suppose that p coherent
narrowband signals {si(n)}pi=1 with the center frequency
f0 impinging on the array from far-field along the distinct
directions {θi}pi=1. The received noisy array data at the nth
snapshot can be expressed as

y(n) = A(θ)s(n) + w(n) (1)

where y(n), s(n) and w(n) are the vectors of the received
noisy signals, the incident signals, and additive noise respec-
tively given by y(n) , [y1(n), y2(n), · · · , yM (n)]T , s(n) ,
[s1(n), s2(n), · · · , sp(n)]T , and w(n) , [w1(n), w2(n), · · · ,
wM (n)]T , while A(θ) is the array response matrix given by
A(θ) , [a(θ1),a(θ2), · · · ,a(θp)], and (·)T denotes trans-
pose.

Four assumptions need to be made. Firstly, given a set
of distinct DOAs {θ1, θ2, · · · .θp}, the array response vec-
tors {a(θ1),a(θ2), · · · ,a(θP )} are linearly independent. Sec-
ondly, the incident signals {si(n)} are all coherent, which
can be expressed as complex multiples of a common sig-
nal s1(n) as si(n) = βis1(n), where βi is a complex
attenuation coefficient of ith signal and the signal s1(n) is
temporally complex Gaussian random process with zero-mean.
The variance of signal s1(n) is given by E {s1(n)s∗1(t)} =
rsδn,t, E {s1(n)s1(t)} = 0,∀n, t where E{·}, (·)∗, and δn,t
denote the expectation, the complex conjugate, and the
Kronecker delta respectively. Thirdly, the additive noises
{wi(n)} are temporally and spatially complex white Gaus-
sian random process with zero-mean and variance σ2, where
E{w(n)wH(t)} = σ2IMδn,t, E{w(n)wT (t)} = OM×M ,

1The paper includes the contents presented in [10].
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while Im, Om×q , and (·)H indicate the m × m identity
matrix, the m × q null matrix, and the Hermitian transpose.
Additionally the additive noises are uncorrelated with the
incident signals; Lastly, the number of incident signals p is
known and it satisfies the relation M ≥ 1.5p.

This paper concentrates on estimating the DOAs {θi}pi=1 of
coherent signals impinging on an arbitrary linear array from
the noisy array data {y(n)}Nn=1 in a computationally efficient
way.

III. PROPOSED METHOD

A. Interpolation Transformation

We design virtual array as uniformly spaced linear array to
make sure the effective implementation of spatial smoothing
preprocessing and polynomial rooting. Firstly we divide the ar-
ray scanning area into K sectors and implement interpolation
transformation on each sector separately, where the kth sector
is defined by the interval [θ

(1)
k , θ

(2)
k ], and we define a set of

angles Θk for each sector with a fixed interval ∆θ [11], [12],
then we can get the response matrix Ak of actual array and
Āk of virtual ULA associated with the set Θk respectively.
There exists a constant matrix Bk which satisfies that

BkAk = Āk (2)

where the interpolated matrix Bk can be estimated as the
least squares solution of (2), and the interpolation error is
defined as ε , (‖Āk − BkAk‖)/(‖Āk‖). According to
experience, we hope that the difference between the position
of the real array and that of the virtual array is as small as
possible [12]. By increasing the number of divided sectors, the
interpolation error decreases, while the computational burden
becomes heavier. Typically we choose the minimum in the
set of K, which meet the condition that ε < 10−3 as the
number of sectors [12]. Then compute B1,B2, · · ·Bk in each
sector separately. For notational convenience, hereafter we use
B to represent B1,B2, · · ·Bk. From (2), we easily get the
covariance matrix R̄ of the virtual ULA as

R̄ = BRBH = ĀRsĀ
H

+ σ2BBH (3)

Here the white noise is converted into colored noise, so a
prewhitening is necessary. By partitioning the convariance
matrix R as

R =

p M−p[
R11 R12

R21 R22

]
p

M−p
(4)

we get the estimate of noise variance σ2 as [14]

σ2 =
tr{R22Π}

tr{Π} (5)

where Π = IM−p − R21R
†
21, and R†21 = (RH

21R21)−1

·RH
21. Clearly by substituting (5) into (3), the ‘prewhitened’

covariance matrix of the virtual array R̃ is given by:

R̃ , ĀRsĀ
H

+ σ2IM = R̄− σ2BBH + σ2IM (6)

By using received data from the real array, we obtain the
covariance matrix R̃ of the virtual array when same incident

signals imping on the virtual array. Hence the given arbitrary
array is converted into virtual ULA successfully.

B. FBSS Preprocessing

The coherence between the incident signals will lead to the
rank deficit of covariance matrix R̃ in (6) So we use spatial
smoothing of subarrays to decorrelate incident signals here.
We divide the virtual uniform linear array into L overlapping
subarrays with M0 (M0 ≥ p+ 1) sensors in the forward and
backward directions, where L = M −M0 + 1, and sensors
{l, l+1, · · · , l+M0−1} or {M− l+1,M− l, · · · , L− l+1}
compose the lth forward subarray or backward subarray re-
spectively, where l = 1, 2, · · · , L. From (6), the covariance
matrixs of the lth forward subarray and the lth backward
subarray are respectively given by:

R̃
f

l = A1D
l−1RsD

−(l−1)AH
1 + σ2IM0

(7)

and

R̃
b

l = A1D
−(M0+l−2)R∗sD

M0+l−2AH
1 + σ2IM0

(8)

where A1 is the first M0 rows of response matrix Ā and D
denotes the p× p diagonal matrix

D , diag
(
e−j(2πf0d/c) sin(θ1), · · · , e−j(2πf0d/c) sin(θp)

)
(9)

then we easily obtain the forward spatially smoothed covari-
ance matrix and the backward spatially smoothed covariance

matrix as R̃
f

= 1
L

L∑
l=1

R̃
f

l and R̃
b

= 1
L

L∑
l=1

R̃
b

l .

In order to minimize the loss of effective aperture, we
can obtain a interpolated spatially forward-backward smoothed
covariance matrix R̃FB as

R̃FB =
1

2

(
R̃
f

+ R̃
b
)

(10)

It has been proved that spatially smoothed covariance matrix
R̃FB is nonsingular, when number of subarrays is greater than
or equal to an half of the number of signals, i.e., L ≥ 0.5p
[13].

C. Modified Capon Beamformer

Based on the spatially smoothed covariance matrix R̃FB

in (10), the standard Capon beamformer (SCB) for the DOA
estimation of the coherent signals is given by

min
w̄

w̄HR̃FBw̄ s.t. w̄Ha(θ) = 1 (11)

where the weight vector w̄ is obtained by

w̄SCB =
R̃
−1

FBā(θ)

ā(θ)HR̃
−1

FBā(θ)
(12)

Then the DOAs of incident signals can be estimated from
the peaks of spatial spectrum PSCB(θ) or the valleys of cost
function fSCB(θ)

PSCB(θ) ,
1

aH(θ)R̃
−1

FBa(θ)
=

1

fSCB(θ)
(13)

By replacing R̃FB in the SCB constraint function with R̃
m

FB,
where m is a positive integer (i.e., m ≥ 1), we can obtain a
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MCB to design the optimal weight vector w̄ by solving the
following problem

min
w̄

w̄HR̃
m

FBw̄ subject to w̄Ha(θ) = 1. (14)

Similarly the solution to the weight vector and the MCB spatial
spectrum are given by

w̄MCB =
R̃
−m
FB a(θ)

aH(θ)R̃
−m
FB a(θ)

(15)

PMCB(θ) =
1

fMCB(θ)
(16)

where fMCB(θ) is the MCB cost function defined by

fMCB(θ) , aH(θ)R̃
−m
FB a(θ). (17)

Apparently the DOAs {θk}pk=1 can be estimated by maximiz-
ing the spectrum PMCB(θ) in (16) without the procedure of
eigendecomposition. Noted that the proposed MCB in (16)
reduces to the SCB in (13) when m = 1.

Benefiting from the Vandermonde structure of the response
matrix Ā of the virtual array, we use a polynomial rooting
to replace the peaks searching here. By defining a complex
variable z as z = ejω, where ω = 2πf0d sin θ/c, from (17), we
get the z format cost function and the corresponding relation
between DOA and complex variable z as:

fMCB(θ) = froot−MCB(z) = āH(z)R̃
−m
FB ā(z) (18)

sin θi =
arg(zi)c

2πf0d
(19)

where ā(θ) = ā(z) = [1, z, · · · , zM−1]. Finally, we obtain
the DOAs of incident signals by finding the minimum values
of froot−MCB(z).

IV. COMPLEXITY ANALYSIS

The computational complexity of Capon method is
FCapon = 10NM2 + Finv (M) + (8M (M + 1) + 1)F (r),
where F (r) is a constant which is only decided by the
angular resolution r, and Finv (M) represents the com-
plexity of inversion operation of matrix with M dimen-
sions. While, the computation complexity of MUSIC method
is FMUSIC = 10NM2 + Fevd (M) + FMDL (M) +
(8 (M −N) (M + 1) + 1)F (r), where Fevd (M) represents
the complexity of eigendecomposition operation of matrix
with M dimensions, and FMDL (M) is the MDL criterion
which has an approximate complexity of O

(
M2
)
. Due to the

high complexity of matrix eigendecomposition and matrix in-
version, the complexity of Capon method and MUSIC method
actually is decided by the calculation of eigendecomposition
and inversion of covariance matrix respectively. At the same
time, interpolated transformation has nearly the same influnce
on Interpolated MUSIC method and our proposed method.
If we set M equals to 10, then the average computation of
eigendecomposition operation is 129215 flops, while that of
inversion operation is 10736 flops. We can see the complexity
of eigendecomposition is over 10 times than that of inversion,
and their difference become even bigger with the increase of
M .

-5 0 5 10 15 20 25
SNR (dB)

10-2

10-1

100

101

R
M

S
E

 (
de

g)

I--FBSS--root--SCB
I--FBSS--root--MCB(m=2)
I--FBSS--root--MCB (m=4)
I--FBSS--root--MUSIC
CRB

Fig. 1. Estimation performance versus SNR

V. NUMERICAL RESULTS

In this section, we evaluate effectiveness of the proposed
method (I-FBSS-root-MCB) for DOA estimation of coherent
narrowband signals by using an arbitrary linear array, which
is constructed by adding a horizontal shift ∆di to the ith
(i = 1, 2, · · ·M ) element of a virtual ULA consisting of
M = 9 sensors with element spacing d = λ/2. Here, we
set the horizontal shift vector as

∆d = [0, 0, 0.1λ,−0.1λ, 0.05λ,

−0.05λ, 0.1λ,−0.05λ,−0.05λ]T . (20)

Two coherent signals with equal power arrive from angles
θ1=10o and θ2= 25o. The number of snapshots is set as
N = 500. The RMSEs of estimates of the DOAs versus SNRs
are shown in Fig. 1.

For comparison, the behavior of the FBSS-based standard
Capon beamformer with interpolation (I-FBSS-root-SCB), the
FBSS-based root-MUSIC with interpolation (I-FBSS-root-
MUSIC) [11], and the Cramer-Rao lower bound (CRB) [15]
are also carried out. The results shown in Fig. 1 are all
based on 1000 independent trials. The empirical root-mean-
square error (RMSE) in the simulations is calculated by

RMSE =

√
1
T

T∑
t=1

P∑
i=1

(
θi − θ̂(t)

i

)2

, where T denotes the total

number of trials and θ̂
(t)
i is the estimate of θi obtained in

the tth trial. In addition, we choose m = {2, 4} for the
experiments.

From the curves in Fig. 1, we can see that all methods
estimate the DOAs of the coherent signals relatively accurately
and the RMSEs decrease significantly with the increase of
SNR, benefiting from the utilizing of interpolation transform
and FBSS preprocessing. Meanwhile, the proposed method
completely outperforms the I-FBSS-root-SCB method, and its
performance becomes better with the increase of power m.
When m reaches 4, the resolution of proposed method is very
close to the I-FBSS-root-MUSIC method, which is known for
its precision.
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VI. CONCLUSION

In this paper, we propose an array interpolation and spatial
smoothing based modified Capon beamforming method for
DOA estimation of coherent signals with arbitrary linear
array. The simulation results show that the proposed method
performs as well as the subspace-based method, where the
computationally burdensome eigendecomposition is avoided.
Meanwhile, the proposed method overcomes the common
restriction of ULA geometry and becomes suitable for more
general array geometry than ordinary methods.
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