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Abstract—In this study, we investigate the novel coupling model
and synchronization states observed in coupled time-delayed
chaotic circuits. Moreover, we compare the standard coupling
model and the novel coupling model and investigate the transition
of chaos. The novel coupling model is a ring of coupled chaotic
circuits with one-direction delay effects. The synchronization
state of the novel coupling model is switching synchronization
state. The switching synchronization state is changed by time
delay of each subcircuit. We focus on relationships between
switching synchronization state and the pattern of time delay.
Finally, we investigate the cycle of switching synchronization
state.

I. INTRODUCTION

Studies on synchronization state are extensively carried out
in various fields [1]-[3]. Recently, in particular, synchroniza-
tion states in chaotic oscillators have been studied by many
researchers. The behavior of chaotic oscillators is interesting.
Then, chaos phenomena are quite dependent on initial values
and not periodical and predictable. Moreover the synchroniza-
tion states have caused very interesting phenomena. Synchro-
nization and the related bifurcation of chaotic systems are
good methods to describe various high-dimensional nonlinear
phenomena in the field of natural science. However, many
synchronization states of coupled chaotic oscillators have not
been solved yet. The synchronization phenomena in electric
circuit make clear the mechanism of the synchronization
phenomena in our daily life. There are many nonlinear systems
containing time delay, such as neural networks, control sys-
tems, meteorological systems, biological systems and so on in
the natural world. Namely, it is considered that investigation of
stability in such time-delay systems is significant [4]. Gener-
ation of chaos in time delayed system is reported self excited
oscillation system containing time delay [5]. The oscillators
have feedback systems which control gains in this study. This
chaotic circuit can be easily realized by using simple electric
circuit element and analyzed exactly. The coupling switch
connects alternately with one subcircuit and the other with
a fixed time interval. On the other hand, there are examples of
nonlinear phenomena, chaotic synchronization and so on [6].
In particular, many studies on synchronization of coupled
chaotic circuits have been reported [7].

In this study, we devise the novel coupling model that takes
advantage of features of the time-delayed chaotic circuit. The
novel coupled model is utilizing the characteristics of the cir-
cuit having time-delayed feedback. Then, we observe switch-
ing synchronization state. We carry out computer calculations
for three coupled auto gain controlled oscillators containing
time delay and investigate time delay of subcircuits effects a
change of synchronization state and the time waveform.

II. TIME-DELAYED CHAOTIC CIRCUIT

Figure 1 shows the time-delayed chaotic circuit. This circuit
consists of one inductor L, one capacitor C, one linear
negative resistor −g and one linear positive resistor G of
which amplitude is controlled by the switch containing time
delay. The current flowing through the inductor L is i, and the
voltage between the capacitor C is v. The circuit equations are
normalized as Eqs. (1) and (2) by changing the variables as
below.

(A) In case of switch connected to −g,{
ẋ = y
ẏ = 2αy − x,

(1)

(B) In case of switch connected to G,{
ẋ = y
ẏ = −2βy − x.

(2)

By changing the parameters and variable as follow:

i =

√
C

L
Vthx, v = Vthy, t =

√
LCτ ,

g

√
C

L
= 2α and G

√
C

L
= 2β.

The switching operation is shown in Fig. 2, it controls the
amplitude of the oscillator. This switching operation is in-
cluded time delay. Td denotes the time delay. First, the switch
is connected to a negative resistor. In state of that, the voltage v
is amplified up to while v is oscillating, the amplitude exceeds
the threshold voltage Vth which is the threshold control loop.
Second, the system memorize the time as Tth while v is
exceeding the threshold voltage Vth and that state is remained
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for Tth. In subsequent the instant of exceeding threshold
Vth, the switch stays the state for Td. After that switch is
connected to positive resistor during Tth. The switch does
not immediately connect in the positive resistor however the
switch is connected after Td. A set of switching operations
control the amplitude of v. By using mapping method to
this circuit, we could derive the one-dimensional Poincare
map explicitly from each circuit, and the Poincare map was
proved to have a positive Liapunov number with computer
assistances [3].

III. RING COUPLED TIME-DELAYED CHAOTIC CIRCUIT

In this section, we investigate the synchronization state for
three time-delayed chaotic circuits coupled by different ele-
ments. Figure 3 shows a schematic of the three coupled time-
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Fig. 1. Time-delayed chaotic circuit.
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Fig. 2. Switching operation.
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Fig. 3. Ring coupling model.

delayed chaotic circuits. Two cases of interest are considered:
the coupling elements are resistors R and inductors L0. We
change the parameters and variables as follows.

in =

√
C

L
Vthxn, vn = Vthyn, t =

√
LCτ , g

√
C

L
= 2α,

G

√
C

L
= 2β, γR = R

√
C

L
and γL0 =

L

L0
.

The normalized circuit equations of the system are given as
follows:

(A) In the case that the switch is connected to the negative
resistor{
ẋn = yn
ẏn = −xn + 2αyn + γm(xn−1 − 2xn + xn+1)

(3)

(B) In the case that the switch is connected to the positive
resistor{
ẋn = yn
ẏn = −xn − 2βyn + γm(xn−1 − 2xn + xn+1)

(4)

where n = 1, 2, 3, m = R,L0 and x0 = x3, x4 = x1.

A. Coupled by resistors R

Figure 5 shows some simulation results, in which the
quasi-in-phase synchronization state can be observed. When
the coupling strength γR is larger than 0.1, full in-phase
synchronization can be observed. However, full in-phase syn-
chronization cannot be observed or synchronization is lost in
the case of a small γR. The Poincare section in Fig.5(d) shows
the presence of chaos.

B. Coupled by inductors L0

Figure 6 shows some simulation results in the case of time-
delayed chaotic circuits coupled by inductors L0. In-phase
synchronization state and three-phase synchronization state
can be observed when γL0

is smaller than 0.1. When γL0
sets

0.01, three-phase and in-phase are switched. When γL0
sets

0.5, only three-phase synchronization state can be observed.
The Poincare section in Fig.6(d) shows the presence of chaos.
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Fig. 4. System including time delay in one direction.
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(a) Attractor

(b) Lissajous figure

(c) Time waveform

(d) Poincare section

Fig. 5. Simulation results of system coupled by resistors R. of
α = 0.015, β = 0.5, γR = 0.01 and Tdn = π.

IV. SYSTEM INCLUDING TIME DELAY IN ONE DIRECTION

The circuit in this study has characteristic time delays
methods. We have devised coupled systems as shown in Fig. 4.
It is called coupled systems and “a ring of coupled chaotic
circuits with one-direction delay effects” The normalized
circuit equations of this system are the same as Eqs.(3) and
(4). It is different pnly how to use a time-delayed signal. The
novel coupling model has three time delays Tdn.

A. Coupled by resitors R

We use resistors R as coupling elements. The simulation
results are shown in the Fig. 7. The time waveform in Fig.7(a)
shows in-phase synchronization and the amplitude of yn is
switched sequentially. This phenomenon is defined as the
switching synchronization state. There are three definitions
of switching synchronization state. First, maintain a constant
phase difference. Second, amplitude oscillations in the order.
Third, patterns of amplitude oscillation. However, when γR
is larger than 0.1, the switching synchronization state is lost
and a full in-phase synchronization state can be observed.
Figure 7(d) shows the presence of small chaos. The chaos of
Fig. 7(d) is changing compared to Fig. 5(d) by one-direction
delay effects. Changing the time delays Tdn change the cycle
of the time waveform. Figure 9 shows the cycle of switching
synchronization with symmetric or asymmetric delay. The
variation of cycle in asymmetric delay is less than symmetric
delay.

(a) Attractor

(b) Lissajous figure

(c) Time waveform

(d) Poincare section

Fig. 6. Simulation results of system coupled by inductors L0.
α = 0.015, β = 0.5, γL0

= 0.01 and Tdn = π.

B. Coupled by inductors L0

When we use inductors L0 as coupling elements, the
simulation results are shown in the Fig. 8 can be observed.
The time waveform in Fig.8(a) shows a phase difference and
the amplitude of yn is switched sequentially. The switching
synchronization state with phase difference can be observed.
The amplitude alternately diverges and converges with differ-
ent divergence and convergence times. However, when γL0

is larger than 0.1, the switching synchronization state is lost.
The presence of small chaos is shown Fig. 8(d). The chaos of
Fig. 8(d) is changing compared to Fig. 6(d) by one-direction
delay effects. Changing the time delays Tdn change the the
cycle of the time waveform. Figure 9 shows cycle of switching
synchronization with symmetric or asymmetric delay. The
variation of cycle in asymmetric delay is less than symmetric
delay. Moreover, when compared with the coupling element,
the number of cycles is larger for system coupled by resistors
R.

V. CONCLUSION

In this study, we devised coupled systems that take ad-
vantage of features of the time-delayed chaotic circuit. We
investigated the synchronization state of a ring of coupled
chaotic circuits with one-direction delay effects. As a result,
some special synchronization states can be observed. This is
the switching synchronization state. The switching synchro-
nization state. There are existence or non-existence of phase
difference in the switching synchronization state. Moreover,

- 69 -



(a) Attractor

(b) Lissajous figure

(c) Time waveform

(d) Poincare section

Fig. 7. Simulation results of system coupled by resistors R.
α = 0.015, β = 0.5, γR = 0.01 and Tdn = π.

when time delay of subcircuits changes, the cycle of switching
synchronization state changes. The switching of the amplitude
can be observed by difference of time delay. The variation of
cycle in asymmetric delay is less than symmetric delay.
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