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Abstract—Synchronization phenomena of frustration network
by coupled oscillators has been studied in a wide range of fields,
such as medicine and engineering. It is investigated towards
various systems up to now. However, analysis of regarding more
complex systems are little. In my study, We developed the system
model so that a basic minimum unit even in more complex
systems. The system is coupled by resistor and inductor with
van del Pol oscillator. In addition, we observed synchronization
phenomena about the system.

I. INTRODUCTION

There are a lot of synchronization phenomena in this world.
This is one of the nonlinear phenomena that we can often
observe by natural animate beings which do collective actions.
For example, firefly luminescence, cry of birds and frogs,
applause of many people and so on. Synchronazation phe-
nomena have a feature that the set of small power can produce
very big power by synchronizing at a time. Therefore study
of synchronization phenomena have been widely reported not
only engineering but also the physical and biological fields[1]–
[6]. Investigation of coupled oscillators attention from many
researchers because coupled oscillatory network produces in-
teresting phase synchronization such as the phase propagation
wave, clustering and complex patterns. In addition, it has the
advantage of being able to manufacture for circuit on the
board.

In this study, we focus on the synchronization phenomena
coupled by van del pol oscillators containing ring and star
structures. Then, we obserb the synchronization phenomena
with computer simulation. van der pol oscillator is shown in
Fig. 1.
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Fig. 1. van der pol oscillator.

II. SYSTEM MODEL

Figure 2 shows a system model constituted van del pol
oscilators (VDP-A and VDP-B). We couple each VDP-B via
inductor L and ground by coupling resistor R. In addition, we
couple VDP-A via resistor r. VDP-A is the only one central
circuit which is connected to all VDP-B in this system by
resistor r.
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Fig. 2. System model.

In the computer simulations, we assume that the voltage
and current characteristics of the nonlinear resistor in each
oscillator are given by the follows:

ig = −g1v + g3v
3, (1)

(g1, g3 > 0).

The charactaristic of ring coupling has in-phase, anti-phase
and N-phase. The charactaristic of star coupling has in-phase
and anti-phase.
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First, the circuit equations of VDP-A are given as follows:
C
dvA
dt

= −iA − iAg +
1

r
(NvA − v1 − v2 − ...− vN ),

L
diA
dt

= vA,
(2)

where N denotes the number of VDP-B.
On the other hand, VDP-B is connected to the adjacent VDP-
B and VDP-A. The circuit equations of VDP-B are given as
follows:

C
dvk
dt

= −ika − ikb − ikg −
1

r
(vk − vA),

2L
dika
dt

= vk −R(ika + ik+1,b),

2L
dikb
dt

= vk −R(ikb + ik−1,a),

(3)

(k = 1, 2, ..., N ).

By using the following parameters and variables:

iA =

√
g1C

3g3L
yA, ika =

√
g1C

3g3L
yka, ikb =

√
g1C

3g3L
ykb,

vA =

√
g1
3g3

xA, vk =

√
g1
3g3

xk,

t =
√
LCτ, “ · ” =

d

dτ
, α = g1

√
L

C
,

β =
1

r

√
L

C
, γ = R

√
C

L
,

(4)

where α is the nonlinearity, β is the coupling strength between
VDP-A and VDP-B. γ indicates the coupling strength between
VDP-B. The normalized circuit equations of VDP-A are given
as follows:

ẋA = αxA

(
1− 1

3
x2
A

)
−yA

+β(NxA − x1 − x2 − ...− xN ),
˙yA = xA.

(5)

The normalized circuit equations of VDP-B are given as
follows:

ẋk = αxk(1−
1

3
x2
k)− yka − ykb − β(xA − xk),

˙yka =
1

2
{xk − γ(yka + yk+1,b)},

˙ykb =
1

2
{xk − γ(yka + yk−1,b)}.

(6)

III. SIMULATION RESULTS

We calculate Eqs. (5) and (6) using the Runge-Kutta method
with the step size h = 0.02. We show the simulation result
of the synchronization phenomena when N = 4 in Fig. 3.
In this figure, we show the attractor of each oscillator and
the horizontal axis is the voltage of each oscillator, and the
vertical axis is the electric current of each oscillator. We set
the parameters α = 0.1, β = 0.0075 and γ = 0.02. In addition,
we show the system model of N = 4 in Fig. 4.
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Fig. 3. Attractor between adjacent oscillators for N = 4 (horizontal axis:xk ,
vertical axis:yk) (k = 1, 2, 3, 4, 5).
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Fig. 4. System model of N = 4.

Next, the time waveforms of the voltage of each capacitor
C after sufficient time has elapsed are shown in Fig. 5. And
the phase differences between the adjacent oscillator of this
case is equal to the result as shown in Fig. 6. It seems that two
electric currents of VDP-B are piled up as we underestand it
from the figures like 3 phase.
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Fig. 5. The Time waveforms of the each oscillator for N = 4.
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Fig. 6. Lissajous figures of N = 4.

Second, the simulation results of the system model con-
taining six circuits are shown in Fig. 7. The value of the
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parameters are fixed with β=0.001, 0.0085 and 0.05. In the
case of β=0.001, 5 phase synchronization appeared because
the coupling strength of VDP-A is weak. The current of the
VDP-A and one of the current of the VDP-B are in phase
at that time. Therefore, we assume 5 phase synchronization.
When the value of β sets 0.0085, some time waveforms of
VDP-B come close on in-phase synchronization. When we
increase coupling strength, most of two electric currents of
VDP-B are piled up as we understand it from the Lissajous
figures.

In the case of β=0.05, 5 phase synchronization become in-
phase synchronization. And then VDP-A becomes anti-phase
synchronization with VDP-B by increasing the value of β. We
understand that VDP-B synchronizes even if we read either
figure.
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Fig. 7. Simulation Results for N=5 (α = 0.1 and γ = 0.02). time-
waveform. Red and other colors denote xc and xN respectively. (N
= 1,2,...,6)

Finaly, we summarize the simulation results in Fig. 8. In
the figure, we show the results when we increase the cuircuit
numbers N = 3, 4, ..., 7. The phase difference is based on one
voltage waveform of VDP-B. The broken line in the figure
represent asynchronous. The solid line in the figure represent
synchronous. From this result, It turns out that an even number
circuits become in-phase as increasing the coupling strength.
Similarly, It turns out that an even number circuits become in-
phase as increasing the coupling strength. However, we could’t
confirm the synchronization state between β=0 and β=0.016
in an odd number circuits.

Fig. 8. Relationship between coupling strength and phase difference.

IV. CONCLUSIONS

In this study, we have proposed a system model using five
and six circuits that are combined the ring and star structures.
We have observed the synchronization phenomena by increas-
ing the coupling strength of ring. When the coupling strength
is sufficiently small, system model becomes like function of
ring coupling therefore, 5 phase synchronization can be ob-
served. By increasing the coupling strength, time wave forms
of VDP-B have come close in-phase synchronization. When
the coupling strength is sufficiently large, time wave forms of
VDP-A and VDP-B become anti-phase synchronization. In the
future, we investigate synchronization phenomena using other
circuits.
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