SPICE Simulation of Three Dimensional Chaotic Circuit Based on Generalized Memristor

Ryo Shizuka¹, Yasuteru Hosokawa¹ and Yoshifumi Nishio²

 ¹ Shikoku University
Furukawa, Ohjin-cho, Tokushima, 771–1192 Japan Phone:+81-88-665-1300
E-mail: 002537015.shikoku.u@gmail.com, hosokawa@keiei.shikoku-u.ac.jp

Tokushima University 2-1 Minami-Josanjima, Tokushima, 770-8506 Japan Phone:+81-88-656-7470 FAX:+81-88-656-7470 E-mail: nishio@ee.tokushima-u.ac.jp

Abstract

Some chaotic circuits using memristor have been proposed. One of them is generalized memristor consisting of a diode bridge with a first order parallel RC filter proposed by Chen et al [1]. The system consists of one negative resistor, two capacitors, one inductor and one generalized memristor which consists of a diode bridge and a RC filter. It means that this system is a forth order system. However, chaos can be generated by a third order system.

In this study, chaotic circuits based on generalized memristor consisting of a diode bridge with a first order parallel RC filter as shown in Fig. 1. This system is a third order system. Bifurcation route from periodic orbits via period doubling bifurcation phenomena to chaos can be observed. Figure 2 shows one of circuit experiment results. Chaotic attractor can be observed.

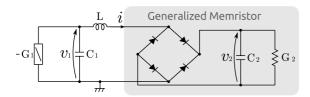


Figure 1: Proposed Circuit.

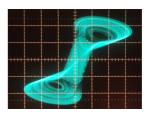


Figure 2: Circuit Experiment Result. Horizontal axis: v_1 . Vertical axis: Node of Generalized Memristor. C₁=0.033[μ F], C₂=0.102[μ F], L=30[mH], G₁=0.844[mS] and G₂=1.38[mS].

References

[1] M. Chen, J. J. Yu, Q. Yu, C. Li and B. C. Bao, "A Memristive Diode Bridge-Based Canonical Chua's Circuit," *Entropy*, no. 16, pp. 6464-6476, 2014.