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Abstract—In this study, we investigate the synchronization of
coupled chaotic circuits in the presence of parameter mismatch.
We consider three different network topologies obtained from
the small-world network model and two parameter dispersions
of mismatched circuits. By means of the computer calculations,
the synchronization probabilities of the entire network are
investigated during a certain time interval. From the simulation
results, we find that the small-world network provides the best
framework to realize synchronization.

I. INTRODUCTION

Complex networks have attracted a great deal of attention
from various fields since the discovery of “small-world”
network [1] and “scale-free” network [2]. In particular, how
network topological structure influences its dynamical behav-
iors, is a significant hot topic. In order to apply for practical
applications in many disciplines, understanding the relation-
ship between topological structure and functional behavior
on the networks can be considered as an important problem.
As the dynamics on the networks, the synchronization is one
of the fundamental phenomenon in various fields. Especially,
chaotic synchronization is very interesting phenomenon, have
received a great deal of attention since the report by Pecora and
Carrol [3]. However, there are not many studies for complex
networks of continuous-time real physical systems such as
electrical circuits. In our previous work, we have investigated
the synchronization phenomena of coupled chaotic circuits on
a complex network with local bridge [4]. We have focused on
local bridge structure observed from the small-world network.
However, the circuit parameters were fixed with same param-
eters for all chaotic circuits and the only one network model
was considered.

In this study, we investigate the global synchronization of
coupled chaotic circuits in the small-world network. Wan and
Chen reported the synchronization in the small-world coupled
Chua’s circuits [5]. We focus on the parameter mismatches, the
synchronization of coupled chaotic circuits in three different
network topologies obtained from the small-world network
model is studied. From the simulation results, synchronization
probability during a certain time interval are compared among
three network topologies. Thereby, the small-world topology
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Fig. 1. Illustration of the WS model for N = 20 and k = 4. (a) : Regular
network, p = 0. (b) : Small-world network, p = 0.1. (c) : Random network,
p = 1.

is shown to be effective for the achievement of the synchro-
nization in the entire network.1

II. SMALL-WORLD NETWORK MODEL

In 1998, Watts and Strogatz introduced very interesting
small-world network model, called the WS model [1]. The
WS model can be generated as shown in Fig. 1. Starting
from a ring lattice with N nodes and k edges per nodes in
Fig. 1(a), each edge is rewired at randomly with probability p.
By increasing the probability p, the randomness of the network
are also increased. The small-world network is known as the
graph which is characterized by highly clustering coefficient
like a regular graph and small path length like a random graph.

Topological structures in complex networks of N nodes
and E edges can be evaluated by the typical three structural
metrics (degree, clustering coefficient and path length). First,
degree (k) shows the number of edges on a node. Second,
clustering coefficient (C) shows the number of actual links
between neighbors of a node divided by the number of possible
links between those neighbors. This is given as follows:

C =
1

N

N∑
n=1

Cn =
1

N

N∑
n=1

2En

kn(kn − 1)
. (1)

1We have already presented this result in Proc. of NOLTA’15, pp. 431-444,
Dec. 2015.

- 15 -

IEEE Workshop on Nonlinear Circuit Networks
December 11-12, 2015



TABLE I
PROPERTIES OF THREE NETWORKS AS SHOWN IN FIG. 1.

Regular Small-world Random
p 0 0.1 1
C 0.500 0.358 0.216
L 2.895 2.458 2.221

Third, path length (L) shows the shortest path in the network
between two nodes. This is given as follows:

L =
2

N(N − 1)

N−1∑
m=1

N∑
n=m+1

l(m,n). (2)

In this research, we consider coupled chaotic circuits in
three different network topologies obtained from the WS
model in Fig. 1. Each topologies is called regular, small-
world and random networks, respectively. Table 1 shows the
properties of three networks as shown in Fig. 1.

III. COUPLED CHAOTIC CIRCUIT

Figure 2 shows the chaotic circuit which is three-
dimensional autonomous circuit proposed by Shinriki et
al. [6][7]. This circuit is composed by an inductor, a negative
resistor, two capacitors, and dual-directional diodes. In this
study, we propose 20 coupled chaotic circuits in three network
topologies as shown in Fig. 1. In these network models, chaotic
circuits are applied to each node of the networks and each edge
corresponds to a coupling resistor R.

First, the circuit equations are given as follows:

L
din
dt

= v2n

C1
dv1n
dt

= gv1n − idn − 1

R

∑
k∈Sn

(v1n − v1k)

C2
dv2n
dt

= −in + idn,

(3)

where n = 1, 2, 3, ..., 20 and Sn is the set of nodes which are
directly connected to the node n. We approximate the i − v
characteristics of the nonlinear resistor consisting of the diodes
by the following three-segment piecewise-linear function:

idn =


Gd(v1n − v2n − V ) (v1n − v2n > V )

0 (|v1n − v2n| ≤ V )

Gd(v1n − v2n + V ) (v1n − v2n < −V ).

(4)

By using the parameters and the variables:

in =

√
C2

L
V xn, v1n = V yn, v2n = V zn

t =
√

LC2τ, “ · ” =
d

dτ
, α =

C2

C1

β =

√
L

C2
Gd, γ =

√
L

C2
g, δ =

1

R

√
L

C2
,

(5)

-g
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Fig. 2. Chaotic circuit.

y

z

1.5

1.5-1.5

-1.5

y

z

1.5

1.5-1.5

-1.5

y

z

1.5

1.5-1.5

-1.5

(a) (b) (c)

Fig. 3. Chaotic attractor of the circuit as shown in Fig. 2. β = 20, γ = 0.5.
(a) : α = 0.46, (b) : α = 0.50, (c) : α = 0.54,

the normalized circuit equations are given as follows:
ẋn = zn

ẏn = αγyn − αf(yn − zn)− αδ
∑
k∈Sn

(yn − yk)

żn = f(yn − zn)− xn.

(6)

The nonlinear function f(yn − zn) corresponds to the i − v
characteristics of the nonlinear resistor consisting of the diodes
and are described as follows:

f(yn − zn) =


β(yn − zn − 1) (yn − zn > 1)

0 (|yn − zn| ≤ 1)

β(yn − zn + 1) (yn − zn < −1).

(7)

This circuit generates asymmetric chaotic attractor as shown
in Fig. 3. The values y and z in Fig. 3 correspond to v1 and v2
of the circuit in Fig. 2, respectively. By increasing parameter
α, the range of chaotic trajectory becomes widely formed.

IV. PARAMETER DISPERSION

In this research, we fix the circuit parameters as α = 0.50,
β = 20, γ = 0.50 and δ = 0.70 for all chaotic circuits.
Additionally, the parameter mismatches ∆α are added for each
circuit parameter α which relate to the chaos degree. Namely,
the parameter α of each circuit is shown as α = 0.5 + ∆α,
respectively. We propose the parameter dispersion as shown
in Fig. 4. Each pattern is different in the number of the
parameter mismatched circuits and the range of the param-
eter mismatches. By using the proposed parameter dispersion
patterns, we add the parameter mismatches for the circuits in
the computer simulations.
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(a) Pattern 1.

(b) Pattern 2.

Fig. 4. Proposed two patterns of the parameter dispersion. Vertical axis: the
number of circuits. Horizontal axis: parameter mismatches ∆α.

0.10

-0.10

0

0.01

-0.01

�

y1 - y2

(a) Nodes 1 and 2.
0.10

-0.10

0

0.01

-0.01

�

y1 - y7
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Fig. 5. The example of the voltage difference between two circuits when the
parameter dispersion pattern 2 in the small-world network and the definition
of the synchronization. (a) : Synchronization. (b) : Asynchronization.

V. SYNCHRONIZATION

A. Definition of Synchronization

Figure 5 shows the example of the computer simulation
results when the parameter dispersion pattern 2 (see Fig. 4(b))
in the small-world network. The vertical axes are the difference
between the voltages (corresponding to v1 of the circuit in
Fig. 2) of the nodes 1 and 2 or 7. Namely, if the two nodes

are synchronized, the value of the graph should be almost
zero. In order to analyze the synchronization state, we define
the synchronization by the following equation:

|yi − yj | < 0.01 (i ̸= j). (8)

By means of the above definition of the synchronization,
we define that the nodes 1 and 2 in Fig. 5(a) are synchronized
perfectly. However, the nodes 1 and 7 in Fig. 5(b) are almost
evaluated as the asynchronization in this definition. Thus,
we propose and investigate the synchronization probability
denoted the synchronization rate during a certain time in-
terval. In this research, we fix a certain time interval as
(τ= 1, 000, 000 and step = 0.01τ ) and statistically investigate
the synchronization probability in the entire network of 20
coupled chaotic circuits.

B. Synchronization Probability
Figure 6 shows the investigation results of the relationship

between the synchronization probability and the combinational
samples of two parameter dispersion patterns in three network
topologies. Each pattern corresponds to the two patterns in
Fig. 4. The vertical axes denote the synchronization probability
in the entire network during the time interval. The horizontal
axes denote the combinational samples considered from each
parameter dispersion pattern. The combinational of the pa-
rameter dispersion is considered a large number. Therefore,
we choose the 10 samples randomly as the combinational
of the parameter dispersion in each pattern of Fig. 4. From
Fig. 6, we confirm that the networks become to be difficult
for the global synchronization by increasing the number of
the parameter mismatched circuits. On the other hand, the
synchronization probability in each pattern depends on the
combinational sample. This reason is that N = 20 would be
too small. However, we found that the synchronization proba-
bility tends to be higher in the small-world network. Therefore,
we consider that the small-world topology is effective for the
synchronization in the entire network. In addition, the complex
relation between global synchronization of the location of
mismatched circuit can be confirmed in this research. More
detailed these relation considering more large number of
samples should be investigated for our future works.

VI. CONCLUSION

This paper considered the synchronization of coupled
chaotic circuits with the parameter mismatches in three net-
work topologies obtained from the WS model. In particular,
we focused on the parameter distribution based on the number
of parameter mismatched circuits. By means of the computer
calculations, the synchronization probabilities of the entire
network were investigated during a certain time interval. From
the simulation results, we found that the synchronization prob-
ability tends to be higher in the small-world network. We con-
sider that the small-world network enhances synchronization.
However, the fluctuation is large among the combinational
samples. This reason is that N = 20 would be too small.
Therefore, more detailed investigation considering more large-
scale networks should be carried out in our future works.
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(a) Pattern 1.

(b) Pattern 2.

Fig. 6. Relationship between the synchronization probability and the combi-
national sample in three network topologies.
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