Synchronization Phenomena of Four Neurons on FitzHugh-Nagumo Model

Takato SEI Yoko UWATE Yoshifumi NISHIO
(Tokushima University)

1. Introduction

Some neural oscillator models are studied by many researchers. FitzHugh-Nagumo (FHN) model is one of these models. Periodic solutions on a pair of FHN models have already found[1]. In addition, the periodic solutions have some ring patterns. We propose a system which a neuron is connected to a triangle system. The system has four neurons with inhibitory coupling. We focus on synchronization phenomena of the system. Likewise, we investigate ring patterns.

2. FitzHugh-Nagumo model

In the following, we study the system which is modeled by the excitable FHN models. FHN model is given by the following equations:

\[\frac{du_i}{dt} = u_i(u_i - \alpha)(1 - u_i) - v_i + \frac{K}{N} \sum_{i\neq j} (u_j - u_i) \] \hspace{1cm} (1)

\[\frac{dv_i}{dt} = \tau (u_i - \gamma v_i) \] \hspace{1cm} (2)

where \(u_{ij} \) is the activator, \(v_{ij} \) is the inhibitor, \(\alpha, \tau \) and \(\gamma \) are parameters, \(K \) is the coupling strength and \(N \) is the number of elements. \(\alpha, \tau \) and \(\gamma \) are fixed at \(\alpha = 0.01, \tau = 0.001 \) and \(\gamma = 0.0 \) because these values are used in previous study of a pair of excitable FHN elements.

3. Simulation results

The simulation model is shown in Fig. 1. We investigate synchronization phenomena by changing the coupling strength \(K \) from \(-1\) to \(0\).

As the results of simulation, in case of \(K = -0.035 \), the observed time waveforms are shown in Fig. 2. Time waveforms \(N_1 \) and \(N_3 \) are synchronized at in-phase with \(N_2 \) and \(N_4 \). Next, we explain two-phase firing pattern in detail. After \(N_1 \) and \(N_3 \) excite, \(N_2 \) and \(N_4 \) excite soon. After these successive excitations, all neurons stay quiescent state for a while. On the next successive excitations, \(N_2 \) and \(N_4 \) excite first. After that, \(N_1 \) and \(N_3 \) excite soon. These states are repeated.

![Figure 1: The system of four neurons on FHN model.](image)

![Figure 2: Time evolution of four neurons on FHN model for the coupling strength \(K = -0.035 \). The solid lines of (a) and (b) correspond to time waveforms of \(N_1(N_3) \) and \(N_2(N_4) \), respectively. The solid lines of (c) correspond to all neuronal time waveforms.](image)

4. Conclusions

In this study, we proposed a system which a neuron is connected to a triangle system. Periodic solution was observed on the system. Furthermore, we found a simple firing pattern. These facts shed some light on neural activity in the brain and the spinal cord where periodic behavior is often observed.

5. Reference