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Abstract—In this study, we propose Multi-Layer Perceptron
(MLP) with pulse glial chain including neurogenesis. In this
network, we one-by-one connect glia unit with neurons in
a hidden-layer. The glia generates a pulse according to the
connecting neuron output. This pulse increases the threshold
of the neuron and excites the neighboring glias. The pulse
generation frequency is also changed according to the connecting
neuron output. Moreover, we introduce a neurogenesis to the
network. By the neurogenesis, any neurons are removed and
newborn neurons are set to same position. The removed neurons
are chosen by the number of pulse generation of the glia, and
the newborn neuron has random value in the connection with
other neurons. We consider that the unimportant neurons for
the learning are removed and the newborn neurons become the
important neurons. By computer simulations, we confirm that the
proposed MLP obtains a better solving ability than the previous
MLP.

I. INTRODUCTION

A glia and a neuron are existing in a human brain. The
neuron has been considered to an important cell for a higher
brain function. Actually, the neuron can transmit electric signal
each other and conduct advanced information processing. On
the other hand, the glia was considered to the supporting cell
for the neuron. The glia exists between the neurons and a blood
vessel and provides necessary nutrients which are carried into
the blood vessel to the neurons. Recently, some researchers
reported that the glia controls an ion concentration [1]-[3].
The glia uses various kinds of ions such as a glutamate acid,
an adenosine triphosphate, a Ca2+, et al. [4]. Among them,
we focus on the Ca2+. The glia occurs a Ca2+ concentration
wave and this wave transmits to other glias, moreover the Ca2+

increases a membrane potential of the neuron. Hence, the glia
closely relates to the higher brain function.

In this study, we propose a MLP with pulse glial chain
including neurogenesis 1 which is extended from the MLP
with pulse glial chain based on individual inactivity period
[5]. The glias are one-by-one connected with the neurons. The
glia receives the connecting neuron output and is excited by
this output. The excited glia generates a pulse and this pulse
transmits to other glias and the neurons. Moreover, the period

1We have already reported this method in Proc. of NOLTA’14, pp. 508-511,
Sep. 2014. In this study, we add new results to this paper.

of inactivity is dynamically changed by the continuous stim-
ulus from the connecting neuron. In this model, we introduce
a neurogenesis to the MLP. The glia count the number of
pulse generations. When the number of pulse generations are
small number, the connecting neuron is removed. After that,
the newborn neuron set to the same position as the removed
neuron. By the frequency of the pulse generation, the glia can
find the important neurons and the unimportant neuronsn. By
the neurogenesis, we consider that the number of contributory
neurons for the network performance increase. We confirm
that the performance of the proposed MLP improves than the
previous MLP, moreover we show the characteristics of the
proposed MLP.

II. PROPOSED MLP

The MLP is a famous feed forward neural networks. In
general, the weight of connection is tuned by a Back Prop-
agation (BP) algorithm [6]. The BP algorithm is useful for
the learning of the MLP, however this algorithm often falls
into a local minimum. In the proposed MLP, we connect the
glias with the neurons. The glia is excited by the output of
the connecting neuron. Then, the glia generates the pulse.
This pulse is input to the connecting neuron threshold and
is transmitted to the neighboring glias. The neighboring glias
are excited by the transmitted pulse and also generate the
pulse. Thereby, the pulse is transmitted into the glial network.
Moreover, the period of inactivity of the glia becomes shorter
when the glia is excited in continuity. By this process, each glia
has a different pulse generation cycle. In the proposed MLP,
we introduce the neurogenesis into the neurons in the hidden-
layer. The neurogenesis happens at a regular iteration. The
removed neuron is chosen by the number of pulse generations
of the connected glia. If the number of the pulse generation
of the connected glia is smaller than the decided value, the
connecting neurons are removed and newborn neurons are
connected in the same position. The weight of connection of
the newborn neuron is decided at random.

A. Updating rule of neuron

We show a proposed updating rule of the neuron. We add the
glial pulse to the threshold of neuron. We use this updating rule

- 70 -

IEEE Workshop on Nonlinear Circuit Networks
December 12-13, 2014



to the neurons in the hidden layer. It is described by Eq. (1).

yi(t+ 1) = f

 n∑
j=1

wij(t)xj(t)− θi(t) + αψi(t)

 , (1)

where y is an output of the neuron, w is a weight of
connection, x is an input of the neuron, and θ is a threshold
of neuron α is a weight of the glial effect. We can change
the glial effect by change of α. In this equation, the weight
of connection and the threshold are changed by BP algorithm.
The glial is independent from BP algorithm, thus the weight
of the glial effect is not changed by BP algorithm. On the
other hand, we use the standard updating rule of the neuron
in the input-layer and the output-layer.

B. Glial pulse

The glia has a response to the output of the connecting
neuron. The glia response is described by Eq. 2.

ψi(t+ 1) ={
1, {(θn < yi ∪ ψi+1,i−1(t− i ∗D) = 1)

∩ (τi ≥ θgi)}
γψi(t), else,

, (2)

where ψ is an output of a glia, i is a position of the glia, θn
is a glia threshold of excitation, y is an output of a connected
neuron, D is a delay time of a glial effect, τ is local time of the
glia during a period of inactivity, θg is a length of the period
of inactivity, γ is an attenuated parameter. When the output of
the connecting neuron is larger than the excitation threshold
of the glia, the glia generates pulse. Then, the output of the
glia ψ has 1. After that the pulse decreases in an exponential
fashion. The pulse excites the neighboring glia which has a
delay of the iteration D.

In this model, the glia has a dynamic period of inactivity.
The dynamic period of inactivity is described by Eq. (3).

θgi(t+ 1) ={
θgi(t)− 1, ψgi(t) = 1 ∩ ψgi(t− θgi) = 1.
θgi(0), else,

, (3)

If the glia continuous generates the pulse, the length of the
period of inactivity becomes shorter. In other case, if the glia
stops the pulse generation, the length of the period of inactivity
becomes a original value. By the change of the period of
inactivity, each glia has different period of inactivity, thereby
the glial network obtains the various pulse generation pattern.
We show an example of the change of the period of inactivity
in Fig. 1. In this figure, we use θg(t)− 5 in each change step
of the period of inactivity for an understandability. The pulse
generation frequency becomes shorter according to the change
of the period of inactivity.

C. Neurogenesis

The neurogenesis happens into the adult human brain, more-
over some researchers reported that the connecting position of
the newborn neuron is decided by the glia [7]. In the proposed
model (shown as Fig. 2), we introduce the neurogenesis to
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Fig. 1. The correlation between the pulse generation and the period of
inactivity.

the neurons in the hidden-layer. We count the number of
excitations of the glia. If the number of excitations of the
glia is smaller than the constant value, the neuron is removed
and the newborn neuron is connected in the same position.
We give the random value to every weight of connection of
the newborn neuron.

Fig. 2. Neurogenesis.

III. SIMULATION

In this study, we use a Two-spiral Problem (TSP) for the
simulation task.The TSP is a famous task for the artificial
neural network and has a high nonlinearity [8] [9]. In this
simulation, we use 130 spiral points for the learning. We
input the coordinates of the spirals, and the MLP learns the
classification of the spirals. In the TSP, the difficulty and the
nonlinearity increase according to the number of spiral points.

In this simulation, we compare the three kinds of the MLPs
which are;

(1) The standard MLP.
(2) The MLP with pulse glial chain based on individual

period of inactivity.
(3) The MLP with pulse glial chain including neurogenesis.

The standard MLP does not have an external unit, thus this
MLP often falls into a local minimum. The MLP with pulse
glial chain based on the individual period of inactivity is
the previous model which was proposed in WCCI’14. We
use a Mean Square Error (MSE) for the evaluation of the
performance.

A. Learning performance

We obtain the result from 100 trials, and one trial has
100000 iterations. In every trial, we give different initial
condition. In this simulation, the neurogenesis happens at
50000 iterations. Then, if the number of pulse generations is
small, the neuron is removed and we set a newborn neuron.
From the simulation result, we obtain four kinds of evaluation
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indexes which are average, minimum, maximum, and standard
deviation. We show the learning performance of the MLPs in
Table I. From this result, the standard MLP (1) is the worst
of all, because this method often falls into local minimum.
The proposed MLP (3) improves the performance from the
previous MLP (2). We consider that the unimportant neurons
are removed by the neurogenesis, and the newborn neuron
works on the learning.

TABLE I
LEARNING PERFORMANCE OF SPIRAL OF 130 POINTS.

Average Minimum Maximum Std. Dev.
(1) 0.09604 0.00027 0.23087 0.05751
(2) 0.00904 0.00037 0.04685 0.01161
(3) 0.00827 0.00087 0.04633 0.00975

B. Dependency on the number of removed neurons

Next, we obtain the average errors in different number of
removed neurons which is shown in Fig. 3. The average error
decreases to 15 removed neurons after that the average error
increases. From this result, we can say that many unimportant
neurons exist in the network and the unimportant neurons are
effectively removed by the neurogenesis.
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Fig. 3. The dependency on the number of removed neurons.

C. Dependency on the number of neurons in the hidden-layer

We change the number of neurons in the hidden-layer
and compare the average of error. The dependency of the
number of neurons is shown in Fig. 4. In general, the learning
performance of the MLP depends on the number of neurons.
However, the average error of the standard MLP does not
change by the number of the neurons. On the other hand,
the MLP with pulse glial chain based on individual period
of inactivity and the proposed MLP decrease the average
error according to increasing of the number of neurons. The
difference of the average error between the MLP with pulse
glial chain based on individual period of inactivity and the
proposed MLP is small in the small number of neurons.
We consider that the proportion of the number of important
neurons is lager than the number of the unimportant neurons
in small number of neurons. Thereby, the neurogenesis is
not efficient to the learning performance in small number of
neurons. When the number of neurons increases, the number
of unimportant neurons also increases. In the large number
of the neurons, the neurogenesis removes many unimportant
neurons and set the newborn neurons. Thus, the proposed

MLP economizes the neurons than the other MLPs by the
neurogenesis in the large number of neurons.
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Fig. 4. Dependency of number of neurons.

IV. CONCLUSIONS

In this study, we have proposed the MLP with pulse glial
chain including the neurogenesis. In this network, the glias
are one-by-one connected with the neurons in the hidden-
layer. The glia is excited by the connecting neuron output,
and excited glia generates the pulse. This pulse transmits to
the other glia and increases the threshold of the neuron. The
pulse generation patterns are variedly changed because the
period of inactivity of the glia is dynamically chain according
to the pulse generation frequency. In addition, the neurogenesis
occurs at half of iterations. By the neurogenesis, some neurons
are removed and the newborn neurons which has random
weights are set in the same position as the removed neurons.
The removed neurons are chosen by the pulse generation
frequency. The neurogenesis increases the number of the
important neurons. By the computer simulation, we confirmed
that the proposed MLP obtains the better performance than
the previous MLPs.
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