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Abstract—In this study, we investigate synchronization phe-
nomena of coupled chaotic circuits. The chaotic circuits are
combined by resisters on one-dimensional coordinate system. We
change the distance between the circuits to adapt the coupling
strength. We investigate synchronization phenomena when the
distance between the circuits in the group is changed. Also, we
measure the phase difference using computer simulations. From
the computer simulations, we could make sure of the breakdown
of inter-cluster synchronization when the system is changed from
the symmetrical system to the asymmetrical system. Additionally,
we compare the results of three systems.

I. INTRODUCTION

Synchronization phenomenon is one of the typical phenom-
ena observed in nature. Recently, many studies have been
investigated synchronization of chaotic circuits [1]∼[5]. It is
focused how the differences of the network structure impact
on the whole circuits. Additionally, it is applicable to the fields
of medical science and biology and so on.

In our research group, we have observed the synchroniza-
tion phenomena from symmetrical coupled chaotic circuits
and asymmetrical coupled chaotic circuits arranged in one-
dimensional coordinate. We used only ladder system. In the
ladder system, chaotic circuits are connected to only adjacent
circuits. Chaotic circuits were coupled by resister. The number
of the circuits was always ten and we investigated symmetrical
systems and asymmetrical systems. The distance between the
central circuits was fixed. We investigated synchronization
phenomena by changing the distance between the circuits. We
have made sure of the breakdown of inter-cluster synchro-
nization when the system was changed from the symmetrical
system to the asymmetrical system [6].

In this study, we use three systems. The systems are ladder
system, bridge system and full coupled system. In the full
coupled system, the chaotic circuits are connected to all
chaotic circuits. In the bridge system, only the circuits in the
group are full coupled. Figure 1 shows each system model.
We compare the results of the phase differences in the three
systems.

II. CIRCUIT MODEL

Figure 2 shows the circuit model. This is a chaotic circuit
called Nishi-Inaba circuit [7]∼[8].

(a) Ladder system. (b) Full coupled system.

(c) Bridge system.
Fig. 1. System models.

Fig. 2. Circuit model.

The normalized equations of this circuit are obtained as
Eq. (1) by changing the variables as below.
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The value of f(y) is described as Eq. (2).
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Figure 3 shows the chaotic attractor generated from the
circuit by using computer simulation (Fig. 3(a)) and circuit
experiment (Fig. 3(b)). For the computer simulation, we set the
parameters as α = 0.460, β = 3.0 and δ = 470. For the circuit
experiment, the parameters are fixed with L1 = 500[mH],
L2 = 200[mH], C = 0.0153[µF ], and rd = 1.46[MΩ].

z

x

(a) Computer simulation. (b) Circuit experiment.

Fig. 3. Chaotic attractor.

In the ladder system, chaotic circuits are connected to only
adjacent circuits.

When chaotic circuits are connected to only adjacent cir-
cuits, the circuit equations are shown in Eqs. (4) ∼ (6).

Where the parameter γij represents the coupling strength
between the circuits. The value of γij reflects the distance
between the circuits in an inverse way, described by the
following equation:

γ{i,j} =
g

(dij)2
. (3)

dij denotes the Euclidean distance between the i-th circuit and
the j-th circuit. The parameter g is coupling coefficient that
determines the coupling strengths. In this study, we set the
parameter as g = 1.0× 10−3.

CC1:  ẋ1 = αx1 + z1
ẏ1 = z1 − f(y1)
ż1 = −x1 − βy1 − γ{1,2}(z1 − z2)

(4)

CCn:
ẋn = αxn + zn
ẏn = zn − f(yn)
żn = −xn − βyn − γ{n,n−1}(zn − zn−1)

−γ{n,n+1}(zn − zn+1)

(5)

CCN : 
ẋN = αxN + zN
ẏN = zN − f(yN )
żN = −xN − βyN

−γ{N,N−1}(zN − zN−1)

(6)

In full coupled system, the circuit equation is shown in Eq.
(7).


ẋi = αxi + zi
ẏi = zi − f(yi)

żi = −xi − βyi −
∑N

j=1 γ{i,j}(zi − zj)

(i, j = 1, 2, · · ·, N)

(7)

In bridge system, the circuit equation is shown in Eq. (8).
This equation shows the case of using ten circuits.

ẋi = αxi + zi
ẏi = zi − f(yi)
żi = −xi − βyi − Γ

(i = 1, 2, · · ·, N)

(8)

CC1∼4:

Γ = γ{n,k}(5 · zn −
5∑

k=1

zk) (n = 1, 2, 3, 4)

CC5:

Γ = γ{5,k}(6 · z5 −
6∑

k=1

zk)

Due to the symmetry of the system, equation for from CC6

to CC10 is omitted.

III. SIMULATION METHOD

We use the three systems arranged in one-dimensional co-
ordinate system. We use ten circuits in computer simulations.
We divide into the two symmetrical groups, and there are five
circuits in one side of the group.

Fig. 4. Network structure.

In the left side and the right side groups, the distances
between the circuits are 0.3. The distance between the central
circuits is 0.5. The symmetrical network structure is shown in
Fig. 5.

Fig. 5. Symmetrical network structure.

We change the distance between the circuits by changing
the coupling strength. We define the distances between the
circuits in the left side group as d1. In the same way, the
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distances between the circuits in the right side group as d2.
And we define the distance between the central circuits as
dcenter. In this simulation, we fix the values of dcenter and
d2, and the value of d1 is changed. The value of d1 is decreased
gradually, and the value of d1 is changed from 0.3 to 0.1. The
asymmetrical network structure is shown in Fig. 6.

Fig. 6. Asymmetrical network structure.

We measure the phase difference between the circuits using
the computer simulation. And we investigate the change in
the phase difference when the system is changed from the
symmetrical system to the asymmetrical system. Additionally,
we compare the results of the three systems.

IV. SIMULATION RESULT

Figure 7 shows the graph of comparison of the results
in each system. This figure is focused on only the phase
difference of the central circuits.

Fig. 7. Comparison of the results in each system (between the central
circuits).

From the simulation result, in the ladder system, the phase
difference is increasing gradually. And the central circuits
become asynchronous around d1 = 0.19. In the bridge system,
the phase difference is increasing gradually in the same way
as ladder system. However the central circuits in the bridge
system becomes asynchronous around d1 = 0.22. Although
the number of coupling of the bridge system is heavier than the
ladder system, the bridge system become faster asynchronous
than the ladder system. In the bridge system, only the circuits
in the group are full coupled. We consider that the bridge
system becomes asynchronous faster than the ladder system,
because the coupling in the group becomes stronger. In the

full coupled system, the central circuits do not become asyn-
chronous for large number of the coupling.

From this result, we can see that the strength of synchro-
nization is not affected by the number of the coupling of the
systems.

V. CONCLUSIONS

In this study, we have investigated the synchronization
phenomena in coupled chaotic circuits networks. We also
investigated the phase difference in the symmetrical network
system and the asymmetrical network system. Additionally, we
have compared the results of three systems. From the computer
simulation, we have confirmed the similar results in all of the
system. Additionally, we have obtained very interesting results
to compare the central circuits of the three systems.

For the future work, we would like to confirm the same
results by using the circuit experiments.
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