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Abstract— SPICE is a very convenient tool for circuit simula-
tion and is used by many researchers. Nowadays, various SPICE-
oriented algorithm are proposed. By using these methods, we can
extend a function of SPICE and can analyze various circuit.

In this study, we propose a SPICE-oriented algorithm for
assessment of stability for oscillatory circuit. We combine the har-
monic balance method, Newton homotopy method and Floquet
theory. We find out a oscillatory parameter by using harmonic
balance method and Newton homotopy method, and we assess
the stability by applying our method. As an example, we assess
the stability of the periodic solutions for Cauer oscillator. The
result shows our propose method gives the correct results.

I. INTRODUCTION

SPICE is used for various analysis of the electrical circuit.
For example, AC analysis, DC analysis, sensitivity analysis,
transient analysis etc. In addition, we can easily perform a
SPICE simulation. We only have to make a netlist or schematic
by computer, without writing a complex program. From this
reason, many people use SPICE for circuit simulation. On the
other hand, many researchers have proposed SPICE simulation
method, which is the introduction of analytical dynamics. We
propose a SPICE-oriented algorithm by applying the analytical
dynamics and combine to the conventional method.

For designing oscillatory circuit, it is important to the
assessment of the stability. We have proposed a SPICE-
oriented algorithm to the assessment of the stability for pe-
riodic solutions which is based on the Floquet theory [1]. In
the conventional method, we assessed the stability of resonant
circuit. In this study, we apply the our method to the oscillatory
circuit by combining the Newton homotopy method [2]-[4].

The article is organized as follows. Section II-A shows
how to use the sine-cosine circuits [5], which is based on
the HB (harmonic balance) [6]-[8] method. We use the sine-
cosine circuit to obtain the value of the voltages which are
required in order to solve variational circuits. Section II-B
shows the Newton homotopy method. This method is realized
by using solution-curve tracing circuit(STC) [9]. Section II-
C shows the Floquet theory [8][10]. Section III shows an
illustrative example and how to solve the variational circuits
by using SPICE. Section IV shows the results and confirms
the effectiveness of the proposed method. Section V concludes
this article.

II. SPICE-ORIENTED ANALYSIS OF OSCILLATOR

A. Sine-Cosine Circuit

The sine-cosine circuit has been introduced in order to solve
the determining equations of the harmonic balance method by
using SPICE. In this section, we explain how we can derive
the sine-cosine circuit for simple passive element cases.

First, we set a voltage and a current with Fourier series;
v = V0 +

n∑
k=1

(Vsk sin kωt+ Vck cos kωt)

i = I0 +
n∑

k=1

(Isk sin kωt+ Ick cos kωt)

(1)

A current through a capacitor is given by

i = C
dv

dt
. (2)

From Eqs. (1) and (2), we can express the current as

i =
n∑

k=1

(−kωCVck sin kωt+ kωCVsk cos kωt). (3)

From Eq. (3), we can express the relation between the coeffi-
cients of sine and cosine components as follows;{

Isk = −kωCVck

Ick = kωCVsk
(4)

In the case of an inductor, we can express the voltage across
an inductor as

v =
n∑

k=1

(−kωLIck sin kωt+ kωLIsk cos kωt), (5)

where the current through an inductor is given by

v = L
di

dt
. (6)

Equations for coefficient of sin kωt and cos kωt are given by{
Vsk = −kωLIck
Vck = kωLIsk

. (7)

If we make the circuit model satisfying this method, a
capacitor is replaced by coupled voltage-controlled current
sources and an inductor is replaced by coupled current-
controlled voltage sources in the sine-cosine circuit.
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B. Newton Homotopy Method

Newton homotopy method is one of method for finding
multiple dc solutions. The circuit model of Newton homotopy
method is shown in Fig. 1. We assume equations as follows;

g0(V0, V1, V2, . . . , VM ) = 0
g1(V0, V1, V2, . . . , VM ) = 0
g2(V0, V1, V2, . . . , VM ) = 0
. . . . . . . . . . . . . . . . . .
gM−1(V0, V1, V2, . . . , VM ) = 0
gM (V0, V1, V2, . . . , VM ) = 0

. (8)

These determining equations are described by a set of al-
gebraic equations, which consists of M -equations and same
number of variables. However, it is not easy to solve the
equations, because they may have the multiple solutions.

Applying the Newton homotopy method to solve Eq. (8),
we obtain the following relation;

G(V , ρ) = g(V )− (1− ρ)g(V(0)) = 0. (9)

where the initial state is set by a point (V(0), ρ = 0) and gets
the solutions satisfying g(v) = 0 at ρ = 1 on the path. ρ shows
solutions curves called homotopy paths, and find the multiple
solutions lying on the paths. A solution curve is traced by
ark-length method as follows;

G(V , ρ) = 0
M∑(

dVi

ds

)2

+

(
dρ

ds

)2

= 1

i = 1
i ̸= 2

. (10)

Equation (10) is realized by using ABMs. Figure 2 shows the
circuit diagram of solution-curve tracing circuit (STC).
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Fig. 1. Circuit model of Newton homotopy method.
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Fig. 2. Solution-curve tracing circuit (STC).

C. Stability of Periodic Solutions

We suppose that there is a circuit equation as

f(ẋ, x, y, ωt) = 0, (11)

and make the variational equation for the regular period
solution of x̂. First, we assume the small change quantity as
(∆x,∆y) as { x = x̂+∆x

y = ŷ +∆y
, (12)

and substitute Eq. (12) to Eq. (11). We obtain the equation as

f( ˙̂x, x̂, ŷ, ωt)+

[
∂f

∂ẋ

∂f

∂x

∂f

∂y

]
|x=x̂,y=ŷ

 ∆̇x
∆x
∆y

 = 0. (13)

In Eq. (13), the first term is regular period solution and second
term is variational equation. We change the second term as

∆̇x = A(t)∆x. (14)

In Eq. (14), A(t) is the periodic function. We apply the Floquet
theory for this periodic function. We write the Jacobian matrix
of the periodic solution as Φ(t). From this, the solution after
one period from initial value of ∆x(0) is given as follows;

∆x(T ) = Φ(T )∆x(0). (15)

Hence, when the eigenvalues (λ1, λ2, . . . , λn) of Φ(T ) satisfy
|λk| < 1 (k = 1, 2, . . . , n), the regular periodic solution x̂ is
stable.

In this study, we derive the variational circuit which corre-
sponds to the variational equation and perform the transient
analysis of Spice just for one period in order to obtain
the components of Φ(T ). We should repeat the transient
analysis by giving different initial conditions to obtain all the
components numerically. However, the number of the repeat
is at most the same as the number of the state variables of the
circuit. Further, it should be mentioned that we do not have to
change the structure of the variational circuit even when the
voltages of the regular periodic solution are changed.

III. ILLUSTRATIVE EXAMPLE

As an illustrative example, we assess the stability with the
circuit in Fig. 3. The circuit parameters in Fig. 3 are set as α =
β = 1, R1 = R2 = R3 = 0.1, L1 = 0.4167, L2 = 0.2618,
L3 = 1.058, C1 = 0.1, C2 = 0.3429 and C3 = 0.439.
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Fig. 3. Cauer oscillator.

The circuit equation can be written as

C1
dv1
dt

+ i1 = αv1 − βv1
3

i1 = i2 + C2
dv2
dt

i2 = i3 + C3
dv3
dt

. (16)

If we write the variables as periodic solutions with small
variations; {

ik = ik0 +∆ik
vk = vk0 +∆vk

(17)

We obtain the following variational equations as

C1
dv10
dt

+∆i1 = α∆v1 − 3βv10
2∆v1

∆i1 = ∆i2 + C2
∆dv2
dt

∆i2 = ∆i3 + C3
∆dv3
dt

, (18)

where we neglect higher-order small terms. From these equa-
tions, we can make the variational circuit of Fig. 3 as shown
in Fig. 4.
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Fig. 4. Variational circuit of Fig. 3.

In Fig. 4, v10 is a steady periodic solution and are calculated
as

v10 = Vc cosωt+ Vs sinωt, (19)

where Vc and Vs are given by the sine-cosine circuit obtained
from the circuit in Fig. 3.

IV. SIMULATION RESULTS

Fig. 5. Result of transient analysis in Fig.4.

Figure 5 is the time-response obtained by solving the circuit
in Fig. 3 with HB method combining with Newton homotopy
method. We found 5 equilibrium points, where ρ (=V(RO))
satisfying ρ = 1. We show the solutions in Table I.

TABLE I
EIGENVALUES OBTAINED BY CONVENTIONAL METHOD

time [sec] 1.5728 20.26 32.72 34.723 36.694
V(Omega) 0.993 2.003 4.002 4.999 5.9797
V(VC1) 1.211 9.446 1.216 2.346 1.1918
V(IL1) 0.1563 65.945 0.499 3.339 0.716
V(VC2) 1.1520 54.84 0.416 6.410 0.598
V(IL2) 0.520 28.398 1.03 7.853 0.513
V(VC3) 1.009 69.43 0.677 3.9160 0.208
V(IL3) 0.956 32.727 0.160 0.740 0.033

We give the obtained value to the circuit of Fig. 4 as initial
condition. The state of initial condition are given as follows;

(∆v10,∆i10,∆v20,∆i20,∆v30,∆i30) (20)

=



(V(VC1), 0, 0, 0, 0, 0)
(0,V(IL1), 0, 0, 0, 0)
(0, 0,V(VC2), 0, 0, 0)
(0, 0, 0,V(IL2), 0, 0)
(0, 0, 0, 0,V(VC3), 0)
(0, 0, 0, 0, 0,V(IL3))

. (21)

We perform the transient analysis with the circuit in Fig. 4
just for one period and obtain the components of Φ(T ) as the
values of the state variables of the variational circuit. We show
Φ(T ) for the 5 cases in Table II. Table III shows eigenvalues
of Φ(T ) for 5 cases, which calculated by MATLAB. We can
see that the point ω = 0.993, ω = 4.0022 and ω = 5.9797 are
stable, because all of eigenvalues satisfy |λ| < 1. However, for
the other two points, ω = 2.0028 and ω = 4.999, the solutions
are unstable, because some eigenvalues do not satisfy |λ| < 1.
These results agree with the results obtained in [4]. Namely,
we can say that our algorithm gives the correct results.
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TABLE II
THE VALUES AFTER ONE PERIOD Φ(T )

(a) ω=0.993
∆v1 ∆i1 ∆v2 ∆i2 ∆v3 ∆i3

1.74m -9.31m 838.9µ 4.08µ 1.67m -1.01m
-5.06m 27.07m -1.07m 172.8µ -5.09m 2.79m
2.76m -6.56m -181.00m -38.07m 33.00m 18.88m
1.06µ 368.49µ -13.33m 90.25m 4.13m -2.55m
6.16m -34.57m 37.01m 13.00m -122.78m 6.98m
-8.51m 43.34m 48.33m -19.05m 15.57m 8.71m

(b) ω=2.0028
∆v1 ∆i1 ∆v2 ∆i2 ∆v3 ∆i3
8.97µ -2.41m -33.81µ -3.16m 229.98µ 573.26µ

-107.69m 28.93 368.68m 37.94 -2.66 -6.89
-1.04m 269.11m 10.02 1.12 -26.39 1.07

-38.26m 10.28 488.71m -8.97 573.54m 1.85
11.41m -3.03 -42.77 2.41 -15.55 -464.38m
32.32m -8.68 1.93 8.60 -542.72m 18.68

(c) ω=4.0022
∆v1 ∆i1 ∆v2 ∆i2 ∆v3 ∆i3

-2.11m 11.89m -13.55m -3.05m 14.41m -16.17m
20.57m -115.25m 120.45m 44.94m -140.34m 150.30m
-16.04m 82.74m 74.55m -247.64m 103.94m -24.97m
-7.00m 58.45m -468.93m 107.90m 203.78m 119.56m
35.59m -200.25m 216.63m 224.77m 272.48m -95.58m
-22.70m 122.12m -29.50m 74.93m -54.25m 19.11m

(d) ω=4.999
∆v1 ∆i1 ∆v2 ∆i2 ∆v3 ∆i3

-133.99µ 2.42m -6.39m 12.28m -5.72m -11.89m
14.93m -269.94m 705.24m -1.32 579.10m 1.28
-61.98m 1.11 -2.17 282.53m 103.94m -24.97m
111.37m -1.95 248.94m 5.25 143.10m 800.73m
-43.34m 720.03m 2.63 116.79m 59.38m -803.17m
-41.11m 722.05m -349.93m 304.82m -365.69m 190.94m

(e) ω=5.9797
∆v1 ∆i1 ∆v2 ∆i2 ∆v3 ∆i3

-279.42µ 1.40m -369.76µ 12.82m -24.20m -15.52m
3.53m -17.92m 12.36m -192.80m 300.38m 209.46m

-642.02µ 8.29m -127.32m 356.41m 130.64m -149.45m
14.70m -87.00m 233.17m 186.32m -115.71m 61.94m
-18.74m 92.17m 58.22m -78.73m 21.73m -49.11m
-4.58m 24.44m -25.35m 16.01m -18.70m 12.03m

V. CONCLUSION

We proposed the SPICE-oriented algorithm to assess the
stability of periodic solutions for oscillator. We obtained
periodic solutions by using harmonic balance method and
Newton homotopy method. We assessed the stability based
on the Floquet theory. In detail, we analyzed the Cauer oscil-
lator for 5 different frequencies which gives both stable and
unstable solutions. Our results agree well with the previously
obtained results. For the next step of our research, we need to
work on assessment of stability of oscillator having complex
characteristics.
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