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Abstract— This paper acquaints the synchronization of coupled
oscillatory system with double tetrahedral forms as a sharing
triangular face. We confirm the synchronization phenomena by
measuring the phase differences between adjacent oscillators.
Also, we obtain the amplitude of each oscillator using the
simulation results.

I. I NTRODUCTION

Coupled oscillatory system is one of the most proper model
to indicate the high-dimensional phenomena in natural science
fields [1]-[7]. there are a lot of synchronization phenomena
in natural environment. Therefore investigations of the cou-
pled oscillatory systems about synchronization phenomena
are reported in biology, physics and mathematics. Coupled
oscillatory systems have various wave patterns and including
wave propagations, clustering and complex patterns. Hence,
various coupled oscillators were proposed, and the part of the
mechanism of the non-linear phenomenon has been elucidated
until now. However investigations on the complex coupled
oscillatory networks have not been studied enough yet.

In our investigations, we use several van der Pol oscillators.
Van der Pol oscillators have been coupled in various form and
investigated about their synchronization phenomena [8], [9].
In particular, three coupled oscillatory system with a ring
topology as shown Fig. 1 have made the very interesting
results [10]. In this circuit system, each oscillator was coupled
by an inductor and the number of coupled oscillators was an
odd number. Then, we could not observe the synchronization
phenomena with in/anti-phase states. That is to say, three-
phase synchronization (phase shift: 120◦) is obtained for the

Fig. 1. Coupled van der Pol oscillators. (a) Three coupled oscillator. (b) Four
coupled oscillator.

Fig. 2. Conceptual circuit model for tetrahedron form.

case of three oscillators by the effect of frustration. However,
the three-phase synchronization was always observed stably in
that system.

In our previous study, we have investigated several kinds of
interesting synchronization phenomena in coupled oscillatory
system which has stronger frustrations. We have researched
four coupled van der Pol oscillators in the regular tetrahedron
form as shown in Fig. 1(b). By computer simulation, we
observed that the phase difference between adjacent oscillators
changed and the synchronization was destroyed after the adja-
cent oscillators synchronize with anti-phase. And the another
study, synchronization phenomena in two coupled triangular
oscillatory networks sharing a branch was investigated in [11].
In this case, we could observed synchronization that the phase
difference of sharing branch is in-phase (phase difference: 0◦),
and the other one between adjacent oscillators are synchro-
nized with anti-phase (phase difference: 180◦).

This paper presents synchronization of coupled oscillators
with double tetrahedrons as a shared triangular face. We show
the our coupled oscillatory system in Fig. 2 which is used
tetrahedral forms sharing a triangular face. We confirm the
synchronization phenomena by measuring the phase differ-
ences between adjacent oscillators.

II. C IRCUIT MODEL

The circuit model is shown in Fig. 3(a). In this circuit model,
two tetrahedrons oscillators are coupled by the triangular face
and the fourth and the fifth oscillators have no connection.
In the computer simulations, we assume that thevk − iRk

characteristics of nonlinear resistor in each oscillator is given
by the following third order polynomial equation.
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Fig. 3. Circuit model with double tetrahedrons. (a) Conceptual circuit model.
(b) Coupled structure.

iRk = −g1vk + g3vk
3 (g1, g3 > 0),

(k = 1, 2, 3, 4, 5).
(1)

The normalized circuit equations are expressed as:
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(k = 1, 2, 3, 4, 5),
where ε is the nonlinearity,γ is the coupling strength,η
indicates the resistive component andyn denotes the current
of neighbor oscillator on coupling resistor. In the computer
simulations, we calculate the phase differences between adja-
cent oscillators. Hererm denotes the internal resistance of an
inductor.

III. SYNCHRONIZATION PHENOMENA

We calculate Eq. (2)-(6) using the fourth-order Runge-Kutta
method with the step sizeh = 0.002. In this simulation, we
consider frequency errorsζ at the voltage equation. In other
word, the voltage equations of the second, the third, the forth
and the fifth oscillators are multiplied byζ (k = 2, 3, 4, 5),

Fig. 4. Attractor between adjacent oscillators (horizontal axis:xk, vertical
axis:yk (k = 1, 2, 3, 4, 5).

Fig. 5. The time waveform of the each oscillator.

we fix the frequency errorsζ2 = 1.001, ζ3 = 1.002, ζ4 =
1.003,ζ5 = 1.004.

We show the simulation result of the synchronization phe-
nomena in Fig. 4. In this figure, we show the attractor of
each oscillator and the horizontal axis is the voltage of each
oscillator, and the vertical axis is the electric current of each
oscillator. These electric currents are summed the four currents
yk = yak + ybk + yck + ydk and we set the parametersε =
0.10,γ = 0.10 andη = 0.00010. Because we defineη to evade
L-loop, we fix this value in these simulations. Next, the time
waveforms of the voltage of each capacitor after sufficient time
has elapsed are shown in Fig. 5. And the phase differences
between the adjacent oscillators of this case is equal to the
result. As a result, in the case of this circuit model, it was
observed that the phase difference finally converged with the
constant value. Also, this phase difference hardly varies even
if we change the initial conditions. The case of parameter
γ > 0.0660, the synchronization phenomena between each
oscillator can be seen asynchronous.

When the coupling strength is strong, the phase differ-
ences converge for in/anti-phase. Shared triangular oscillators
are synchronized for in-phase but the shared oscillators are

Fig. 6. Amplitude of voltage.
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Fig. 7. Difference of amplitude.

synchronized with other oscillators for anti-phase. Also, We
describe changes of the amplitudeρk of voltage in Fig. 6.
In this result, the amplitudes are divided into two groups
that one of the groups is the shared oscillators and the
other one is the remained oscillators. We can find that all
of amplitudes decrease by varying the parameterγ. Figure 7
shows the difference of amplitudeρ4 − ρ1, if the difference
of the amplitude becomes big to some extent, each amplitude
influences on the phase difference and each oscillator tends to
converge for in/anti-phase.

IV. CONCLUSIONS

This paper has acquainted the synchronization of coupled
oscillatory system with double tetrahedral forms as a sharing
triangular face. We have confirmed the synchronization phe-
nomena by measuring the phase differences between adjacent
oscillators. Unlike the case only for the tetrahedron form, it
was observed that the phase difference converged with certain
values. Also, the coupling strength grew big, we could find
that the amplitude of each oscillator decreased by using the
simulation results.
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