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Abstract— In this study, a parametrically forced logistic map
that a parameter of the logistic map are forced into periodic
varying is suggested. Unique bifurcations from period to chaos
are observed in the map. Then, synchronization phenomena in
globally coupled system of the parametrically forced logistic
map are investigated. When the number of coupling is three,
various synchronization phenomena are observed by choosing
a coupling intensity. The synchronization phenomena fall into
three general categories, which are asynchronous, self-switching
of synchronization, synchronization of two among the three maps
and synchronization of all the maps. Further more, relationship
between sojourn time and the coupling intensity in the self-
switching of synchronization is investigated. The sojourn time
increase exponentially with the coupling intensity.

I. I NTRODUCTION

Synchronization is one of the fundamental phenomena in
nature, and one of typical nonlinear phenomena. Therefore,
studies on synchronization phenomena of coupled systems are
extensively carried out in various fields, physics [1], biology
[2], engineering and so on. However, the issues that should
be investigated for synchronization remain in existence in
spite of many researching. In particular, it is necessary to
investigate synchronization phenomena in special conditions.
There is parametric excitation that an amplitude of oscillation
is increased by periodic varying of a parameter in some
system. Parametric excitation circuit is one of resonant circuits,
and it is important to investigate various nonlinear phenomena
for future engineering applications. In a simple oscillator
including parametric excitation, Ref. [3] reports that the almost
periodic oscillation occurs if nonlinear inductor has saturation
characteristic. Additionally the occurrence of chaos is referred
in Refs. [4] and [5].

By the way, spatiotemporal chaotic phenomena that
spatially-extended systems indicate temporal and spatio com-
plex patterns have been studied. Behavior generated in coupled
system of chaotic one-dimensional map is investigated in
Refs. [6]-[8] In particular, Coupled Map Lattice (CML) and
Globally Coupled Map (GCM) are well known as mathemati-
cal models in discrete-time system. Various kinds of dynamics
are observed in their systems. The research into CML and
GCM are important for not only modeling of multiple degree
of freedom nonlinear systems but also suggestion to biological
networks and engineering applications. In the past we have

investigated effects of parametric excitation in coupled van der
Pol oscillators [9]. In this study, for more detailed investigation
of effect of the parametric excitation on synchronization, we
focus on a globally coupled system of simple one-dimensional
maps. A typical scheme for global coupling is given by

xi(t + 1) = (1− ε)f [xi(t)] + ε
N

N∑
j=1

f [xj(t)]

(i = 1, 2, · · ·, N, )
(1)

whereε is the coupling intensity. The globally coupled maps
are a scheme that an average number of all the maps affect
each of the maps, and similar to the system that we have
studied using van der Pol oscillators. Hence, we investigate
synchronization phenomena in a globally coupled system of
one-dimensional maps which are forced by periodic parameter
change. The one-dimensional map used in this study is a
logistic map, since the map can be described by a simple
discrete equation. The logistic map is a polynomial mapping,
often cited as an archetypal example of how complex chaotic
behavior can be arisen from very simple nonlinear dynamical
equations. Mathematically, the logistic map is written as

x(t + 1) = αx(t)(1− x(t)). (2)

Firstly, we describe behaviors and bifurcations of the para-
metrically forced logistic map. Next, we investigate synchro-
nization phenomena in the globally coupled parametrically
forced logistic maps.

II. PARAMETRICALLY FORCED LOGISTIC MAP

A parametrically forced logistic map used in this study is
described as:

x(t + 1) = αf (t)x(t)(1− x(t)), (3)

and

αf (t) =





α1, n(τ1 + τ2) < t ≤ n(τ1 + τ2) + τ1

α2, n(τ1 + τ2) + τ1 < t ≤ (n + 1)(τ1 + τ2)
(n = 1, 2, ...)

,

(4)
where αf (t) is a term of the parametric force and time-
varying. The parametric force operation can be described as
follows: in the time intervaln(τ1 + τ2) < t ≤ n(τ1 + τ2)+ τ1,
the system is driven by a parameterα1 during the durationτ1;
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(a)

(b)

Fig. 1. One-parameter bifurcation diagrams (left) and the Lyapunov exponents (right) forα1 = 3.8. Horizontal axis:α2. (a) τ = 1. (b) τ = 2.

while in the intervaln(τ1 + τ2) + τ1 < t ≤ (n + 1)(τ1 + τ2),
the system is driven by a parameterα2 during the durationτ2.
Namely, in this system, two kinds of parameters are replaced
alternately by the number of updates. Then, a parameter giving
a periodic solution and a parameter giving another periodic
solution can be combined. Of course, other combinations,
for instance two parameters giving a periodic solution and a
chaotic solution or two parameters giving two kinds of chaotic
solutions, are possible. In this study, we assumeτ1 = τ2 = τ
for simplicity.

III. B IFURCATION

Before investigating synchronization phenomena in the
globally coupled parametrically forced logistic maps, it is
necessary to investigate behavior and bifurcation of one un-
coupled parametrically forced logistic map. Figure 1 shows
computer calculated results. Fixing a parameterα1 = 3.8
and τ = 1 and varying a parameterα2, the one-parameter
bifurcation diagram and the Lyapunov exponents are obtained
as shown in Fig. 1(a). Figure 1(b) shows the bifurcation
diagram and the Lyapunov exponents forτ = 2. The different
types of bifurcation diagrams are obtained. From these figures,
observations of periodic and chaotic attractors are confirmed.

Figure 2 show some examples of the return maps of the
parametrically forced logistic maps. For the original logistic
map, two-periodic solution is observed forα = 3.0. While,
three-periodic solution is observed forα = 3.8. These two
solutions are periodic, whereas in the logistic map involving
parametric force, a solution is chaotic as shown in Fig. 2(a)
when the parametersα1 andα2 are set3.0 and3.8. Namely,

(a) (b)

(c) (d)

Fig. 2. Return maps of parametrically forced logistic maps forτ = 1. (a)
α1 = 3.0 and α2 = 3.8. (b) α1 = 3.8 and α2 = 4.0. (c) α1 = 3.0 and
α2 = 4.0. (d) α1 = 3.5 andα2 = 4.0.

chaotic solution can be observed in the combination of two
parameters that generate two kinds of periodic solutions.

IV. SYNCHRONIZATION

Synchronization phenomena generated in the globally cou-
pled logistic map involving parametric force are investigated
for one control parameterε which is a coupling intensity when
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Fig. 3. Conceptual structure of three coupled parametrically forced logistic
maps.

Fig. 4. Lyapunov exponents in globally coupled parametrically forced logistic
maps forα1 = 3.0, α2 = 3.8 andτ = 1. Horizontal axis:ε.

the number of coupling is three. Figure 3 shows a conceptual
structure of teh three coupled parametrically forced logistic
maps. In the following computer calculations, the parameters
are fixed asα1 = 3.0, α2 = 3.8 andτ = 1.

The three-dimensional Lyapunov exponents obtained at
α1 = 3.8, α2 = 4.0 andτ = 1 are shown in Fig. 4. In Fig. 4,
λ1 is maximal Lyapunov exponent. Figure 5 shows examples
of synchronization phenomena. In Fig. 5, upper figures show
the return maps and lower figures show the phase differences
between the maps.

First, when the coupling parameterε is small, three lya-
punov exponents are almost same and the maps are almost
asynchronous as shown in Fig. 5(a). Increasing the cou-
pling intensity over0.0400, the lyapunov exponents decrease
rapidly. Then a self-switching phenomenon of synchronization
is observed. As increasing the coupling intensity,λ1 becomes
negative and attractors of the maps become periodic. Then,
two of the three maps are synchronized as shown in Fig. 5(b).
Moreover, as increasing the coupling intensity over0.100,
all the λ become positive and the attractors become chaotic
as shown in Fig. 5(c). Although all the maps become to be
asynchronous. After that,λ3 comes close to zero. Then two
of the three maps are synchronized as shown in Fig. 5(d). In
the figure, all attractors behave chaotic, and map1 and map
3 are synchronized. While, the shapes of the return maps are

(a)

(b)

(c)

(d)

(e)

Fig. 5. Synchronization of three chaos.α1 = 3.0, α2 = 3.8 and τ = 1.
(a) ε = 0.000. (b) ε = 0.085. (c) ε = 0.100. (d) ε = 0.170. (e) ε = 0.200.
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different from that of the uncoupled map. Finally, when the
coupling intensityε is over0.2, λ2 andλ3 become negative.
Then, all the maps are synchronized as shown in Fig. 5(e). In
the figure, all attractors are chaotic and have the same shapes
as a attractors of the uncoupled map.

V. SELF-SWITCHING PHENOMENON

(a)

(b)

Fig. 6. Time series of differences between two maps.α1 = 3.0, α2 = 3.8
andτ = 1. (a) ε = 0.0400. (b) ε = 0.0415.

Fig. 7. Sojourn time of the self-switching.α1 = 3.0, α2 = 3.8 andτ = 1.
Hertical axis:ε, vertical axis: the mean value of the sojourn time.

The self-switching phenomenon of synchronization is ob-
served when theε is set around0.04. The phenomenon is
that two among the three maps are synchronized and the
combination which maps are coupled changes with time.
Figure 6 shows time series of differences ofx(t) between
two maps. Areas where the amplitudes of the time series are
small correspond to in-phase synchronization in the figure. In
Fig. 6(a), firstly, map 1 and map 2 are synchronized. However,
after a time, the synchronous state breaks up and map 1 and
map 3 are synchronized. As seen above, the synchronous states
switch with time in sequence. Additionally, a sojourn time of
the self-switching is related toε. The sojourn time is short
when ε is small, whereas the sojourn time is long whenε is
big as shown Figs. 6(a) and (b). Figure 7 shows sojourn time
of the self-switching betweenε = 0.04 and ε = 0.0405. The
sojourn time increases exponentially withε.

VI. CONCLUSION

In this study, parametrically forced logistic map was sug-
gested. Unique bifurcations from period to chaos were ob-

served. Then, synchronization phenomena in globally cou-
pled system of the parametrically forced logistic map were
investigated. For the number of coupling is three, various
synchronization phenomena are observed by choosing a cou-
pling intensity. The synchronization phenomena fall into three
general categories, which are asynchronous, self-switching of
synchronization, synchronization of two among the three maps
and synchronization of all the maps. Further more, relationship
between sojourn time and the coupling intensity in the self-
switching of synchronization was investigated. The sojourn
time increase exponentially with the coupling intensity.
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