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Abstract— This study proposes a Particle Swarm Optimization (PSOMS1) (Initialization) Let a generation step = 0.
with Map Structure (PSOMS). All particles of PSOMS are Randomly initialize the particle positioX; and its velocity
connected to adjacent particles by neighborhood relation, which Vv, for all particlesi, and initialize P; = (pi1, piz, -+ ,pip)
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dictates the topology, of the 2-dimensional map. Each particle . L ;
is updated depending on the neighborhood distance between it with a ‘?OPY Oinj Evaluatg the objective fu.nct|of1(Xi) for
and a winner, whose function value is best among all particles. all particlei and find P, with the best function value among
Simulation results show the searching efficiency of PSOMS. the all particles. Defing as the winnet.

(PSOMS2) Evaluate the fithesg (X ;) and find the winner

I. INTRODUCTION particlec with the best fitness among the all particles at current

Particle Swarm Optimization (PSO) [1] is an evqutionar)t)me'
algorithm to simulate the movement of flocks of birds. Due ¢ = argmin{f (Xi(t))}- (1)
to the simple concept, easy implementation, and quick con-
vergence, PSO has attracted much attention and is used tbor each particle, if f(X;) < f(P;), the personal best
wide applications in different fields in recent years. Howeveposition (calledpbesj P, = X;.
PSO greatly depends on its parameters and converge pre-et P, represents the best position with the best fitness
maturely in case of solving complex problems which havemong all particles so far (callagbes). If f(X.) < f(P,),
local optima. Furthermore, in PSO algorithm, there are npdategbest P, = X ., where X, is the position of the
special relationships between particles. Each particle positismner c.
is updated according to its personal best position and the b@8OMS3) UpdateV'; and X ; of each particlei depending
particle position among the all particles, and their weights aoa its pbest gbestand the distance on the map betwéend
determined at random in every generation. On the other sidetlie winnerc, according to
the real world, various personal relationships exist, such as the
hierarchical relationship, the trust relationships, the parents-  vid(t + 1) = wvia(t) + cirand(-) (pia — wia(t))

child relationship and so on. + cohei (Ted — ia(t)) )
In this study, we propose a new Particle Swarm Optimiza-
tion with Map Structure (PSOMS). All particles of PSOMS zia(t +1) = @ia(t) + via(t + 1),

are connected to adjacent particles by neighborhood relatighere o4 is the inertia weight determining how much of the
which dictates the topology, of the 2-dimensional map. Igrevious velocity of the particle is preserved.ande, are two
every generation, we find a winner particle, whose f“nCt'CPbsitive acceleration coefficients, generafly = c». rand()

value is best among all particles, and each particle is updajed,, ,niform random numbers samples frén0, 1). he; is
depending on the neighborhood distance between it and {hg fixeq neighborhood function defined by ’ !

winner on the map. Simulation results and comparisons with

the standard PSO show that the proposed PSOMS can effec- b |l —rc||? 3

tively enhance the searching efficiency. ei = EXP{ 53 ’ ®3)

Il. PARTICLE SWARM OPTIMIZATION WITH MAP where||r; — r.|| is the distance between map nodeand
STRUCTURE (PSOMS) on the map, the fixed parametercorresponds to the width of

) ] ) .___.the neighborhood function. Therefore, the largstrengthens
In the algorithm of PSO, multiple solutions called “partiyapticies’ spreading force to the whole space, and the small
cles” coexist. The most important feature of PSOMS is that @{rengthens their convergent force toward the winner.

particles are organized on a rectangular 2-dimensional grid. IﬂSOMS4) Lett—t+ 1 and go back to (PSOMS2)
other words, the particles are connected to adjacent partic‘es '

by neighborhood relation, which dictates the topology, of the I

o . . . . EXPERIMENTAL RESULTS
map. The position vector of each particleand its velocity

vector are represented bX,; = (w1, - ,%id, " ,TiD) In order to evaluate the performance of PSOMS, we use
andV; = (v;1,--+ ,v4," - ,vip), respectively, whered(= two benchmark optimization problems. One is the Rosenbrock
1,2,--- D), (1=1,2,--- ;M) andz;q € [Tmin, Tmax)- function f; as Eq. §) and the other is the Rastrigin function



TABLE |
COMPARISONRESULTS OFPSOAND PSOMSFOR f1 AND fa.

10

f ‘ Method‘ Mean Minimum  Maximum

log(f(x))

PSO | 1785590 950156  312.9265 ——P0 | T;
Il psoms| 1020688 96.4675  138.9978 of [TSTPOMS| | | | |

PSO | 4443451 337.3337  584.0390 1005 055 06 065 07 075 08
221 bsoms | 1789360 1143723 236.4654 w

(5]
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0 500 1000 1500 2000 Fig. 3. Results for Rosenbrock functioff; with different parameters.
Number of time steps t (a) Using differentw. c;(= cp) is fixed as 1.6 for PSO and as 1.8 for
PSOMS. (b) Using different; (= c2). w is fixed as 0.7 for PSO and as 0.8
Fig. 1. Mean Rosenbrock function value of every generation. for PSOMS.
10*
2 —=— PSO We carry out the simulations repeated 30 times for each
g —e— PSOMS optimization function with 2000 time steps. The performance
=) of PSO and PSOMS with their corresponding minimum and
% mean function values are listed in Table Figures1 and
= 2 show the mean value of the best function value of every
@ —0—0 generation over 30 runs fagf; and f, function, respectively.
= From these results, we can see that the results of PSOMS

0 500 1000 1500 2000 have better accuracy. In PSO, the number of particles which
Number of time steps t move towardgbestor toward pbestis decided by random on
every generation and is not stable. On the other hand, the
neighborhood gaussian function is used in PSOMS, therefore,
the particles move according to the neighborhood distance
between the winner and them. The winner's neighborhood
f2 as Eq. b). particles move beyond the winner so that they spread to whole
D-1 ) space. The particles, which are connected at a little distance
(100 — de) +(1- xd)Q) , 4 from the winner, move toward the winner. The other particles
d=1 ) fly toward theirpbest In other words, the roles of the PSOMS
x € [—2.048,2.047]7 particles are determined by the connection relationship.
D Furthermore, in order to investigate the effect of the param-
Z — 10 cos (2m24) + 10) eters; the inertia weight) and _the acceler_atlon c_o_ef_'fluerptﬁ
(5) andcy, on performance quality and their sensitivity, Figs.
D and4 show the mean function values with different parameters.
€ [-5.12,5.12] ) ) ;
The fixed parameters are same as above simulations. The
For both two functions, we us® = 100 dimensions. The proposed PSOMS is more effective and the parametrical
optimum solutionsz* of f; and f, are [1,1,...,1] and dependence is not stronger than PSO. The performance of
[0,0,...,0], respectively, and the optimum function valuepsQ is sensitive to the parameters, however, the performance
f(z*) of both functions are 0. of PSOMS is stable.
The population size is set to 36 in PSO, and the network
size is6 x 6 in the proposed PSOMS. We choose the best IV. CONCLUSIONS
parameters for each algorithm by the trial-and-error methodThis study has proposed a Particle Swarm Optimization with
although PSOMS can obtain better results than PSO everMiip Structure (PSOMS). All particles of PSOMS are con-
PSOMS uses same parameters as PSO. For RS6,0.7 nected to adjacent particles by neighborhood relation, which
andc; = ¢ = 1.6. For PSOMSw = 0.8, ¢; = c; = 1.8 and dictates the topology, of the 2-dimensional map. Each particle
o = 1.0. is updated depending on the neighborhood distance between it

Fig. 2. Mean Rastrigin function value of every generation.
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Fig. 4. Results for Rastrigin functiorfy with different parameters. (a) Using
differentw. ¢; = c2 is fixed as 1.6 for PSO and as 1.8 for PSOMS. (b) Using
differentc; (= ¢2). w is fixed as 0.7 for PSO and as 0.8 for PSOMS.

and a winner, whose function value is best among all particles.
In the simulation results, the searching efficiency of PSOMS

is better than PSO. Furthermore, we have confirmed that the
parametrical dependence of PSOMS is not stronger than PSO.
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