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Abstract— This study proposes a Particle Swarm Optimization
with Map Structure (PSOMS). All particles of PSOMS are
connected to adjacent particles by neighborhood relation, which
dictates the topology, of the 2-dimensional map. Each particle
is updated depending on the neighborhood distance between it
and a winner, whose function value is best among all particles.
Simulation results show the searching efficiency of PSOMS.

I. I NTRODUCTION

Particle Swarm Optimization (PSO) [1] is an evolutionary
algorithm to simulate the movement of flocks of birds. Due
to the simple concept, easy implementation, and quick con-
vergence, PSO has attracted much attention and is used to
wide applications in different fields in recent years. However,
PSO greatly depends on its parameters and converge pre-
maturely in case of solving complex problems which have
local optima. Furthermore, in PSO algorithm, there are no
special relationships between particles. Each particle position
is updated according to its personal best position and the best
particle position among the all particles, and their weights are
determined at random in every generation. On the other side, in
the real world, various personal relationships exist, such as the
hierarchical relationship, the trust relationships, the parents-
child relationship and so on.

In this study, we propose a new Particle Swarm Optimiza-
tion with Map Structure (PSOMS). All particles of PSOMS
are connected to adjacent particles by neighborhood relation,
which dictates the topology, of the 2-dimensional map. In
every generation, we find a winner particle, whose function
value is best among all particles, and each particle is updated
depending on the neighborhood distance between it and the
winner on the map. Simulation results and comparisons with
the standard PSO show that the proposed PSOMS can effec-
tively enhance the searching efficiency.

II. PARTICLE SWARM OPTIMIZATION WITH MAP

STRUCTURE (PSOMS)

In the algorithm of PSO, multiple solutions called “parti-
cles” coexist. The most important feature of PSOMS is that all
particles are organized on a rectangular 2-dimensional grid. In
other words, the particles are connected to adjacent particles
by neighborhood relation, which dictates the topology, of the
map. The position vector of each particlei and its velocity
vector are represented byXi = (xi1, · · · , xid, · · · , xiD)
and V i = (vi1, · · · , vid, · · · , viD), respectively, where (d =
1, 2, · · · , D), (i = 1, 2, · · · ,M ) andxid ∈ [xmin, xmax].

(PSOMS1) (Initialization) Let a generation stept = 0.
Randomly initialize the particle positionXi and its velocity
V i for all particlesi, and initializeP i = (pi1, pi2, · · · , piD)
with a copy ofXi. Evaluate the objective functionf(Xi) for
all particle i and findP g with the best function value among
the all particles. Defineg as the winnerc.
(PSOMS2) Evaluate the fitnessf(Xi) and find the winner
particlec with the best fitness among the all particles at current
time.

c = arg min
i
{f (Xi(t))}. (1)

For each particlei, if f(Xi) < f(P i), the personal best
position (calledpbest) P i = Xi.

Let P g represents the best position with the best fitness
among all particles so far (calledgbest). If f(Xc) < f(P g),
updategbest P g = Xc, where Xc is the position of the
winner c.
(PSOMS3) UpdateV i and Xi of each particlei depending
on its pbest, gbestand the distance on the map betweeni and
the winnerc, according to

vid(t + 1) = wvid(t) + c1rand(·) (pid − xid(t))
+ c2hc,i (xcd − xid(t)) ,

xid(t + 1) = xid(t) + vid(t + 1),

(2)

wherew is the inertia weight determining how much of the
previous velocity of the particle is preserved.c1 andc2 are two
positive acceleration coefficients, generallyc1 = c2. rand(·)
is an uniform random numbers samples fromU(0, 1). hc,i is
the fixed neighborhood function defined by

hc,i = exp
(
−‖ri − rc‖2

2σ2

)
, (3)

where‖ri − rc‖ is the distance between map nodesc and i
on the map, the fixed parameterσ corresponds to the width of
the neighborhood function. Therefore, the largeσ strengthens
particles’ spreading force to the whole space, and the smallσ
strengthens their convergent force toward the winner.
(PSOMS4)Let t = t + 1 and go back to (PSOMS2).

III. E XPERIMENTAL RESULTS

In order to evaluate the performance of PSOMS, we use
two benchmark optimization problems. One is the Rosenbrock
function f1 as Eq. (4) and the other is the Rastrigin function
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TABLE I

COMPARISON RESULTS OFPSOAND PSOMSFOR f1 AND f2 .

f Method Mean Minimum Maximum

f1
PSO 178.5590 95.0156 312.9265

PSOMS 102.9688 96.4675 138.9978

f2
PSO 444.3451 337.3337 584.0390

PSOMS 178.9360 114.3723 236.4654
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Fig. 1. Mean Rosenbrock function value of every generation.
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Fig. 2. Mean Rastrigin function value of every generation.

f2 as Eq. (5).

f1(x) =
D−1∑

d=1

(
100

(
x2

d − xd+1

)2
+ (1− xd)

2
)

,

x ∈ [−2.048, 2.047]D
(4)

f2(x) =
D∑

d=1

(
x2

d − 10 cos (2πxd) + 10
)
,

x ∈ [−5.12, 5.12]D
(5)

For both two functions, we useD = 100 dimensions. The
optimum solutionsx∗ of f1 and f2 are [1, 1, . . . , 1] and
[0, 0, . . . , 0], respectively, and the optimum function values
f(x∗) of both functions are 0.

The population size is set to 36 in PSO, and the network
size is 6 × 6 in the proposed PSOMS. We choose the best
parameters for each algorithm by the trial-and-error method
although PSOMS can obtain better results than PSO even if
PSOMS uses same parameters as PSO. For PSO,w = 0.7
andc1 = c2 = 1.6. For PSOMS,w = 0.8, c1 = c2 = 1.8 and
σ = 1.0.
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Fig. 3. Results for Rosenbrock functionf1 with different parameters.
(a) Using differentw. c1(= c2) is fixed as 1.6 for PSO and as 1.8 for
PSOMS. (b) Using differentc1(= c2). w is fixed as 0.7 for PSO and as 0.8
for PSOMS.

We carry out the simulations repeated 30 times for each
optimization function with 2000 time steps. The performance
of PSO and PSOMS with their corresponding minimum and
mean function values are listed in TableI. Figures 1 and
2 show the mean value of the best function value of every
generation over 30 runs forf1 and f2 function, respectively.
From these results, we can see that the results of PSOMS
have better accuracy. In PSO, the number of particles which
move towardgbestor towardpbestis decided by random on
every generation and is not stable. On the other hand, the
neighborhood gaussian function is used in PSOMS, therefore,
the particles move according to the neighborhood distance
between the winner and them. The winner’s neighborhood
particles move beyond the winner so that they spread to whole
space. The particles, which are connected at a little distance
from the winner, move toward the winner. The other particles
fly toward theirpbest. In other words, the roles of the PSOMS
particles are determined by the connection relationship.

Furthermore, in order to investigate the effect of the param-
eters; the inertia weightw and the acceleration coefficientsc1

and c2, on performance quality and their sensitivity, Figs.3
and4 show the mean function values with different parameters.
The fixed parameters are same as above simulations. The
proposed PSOMS is more effective and the parametrical
dependence is not stronger than PSO. The performance of
PSO is sensitive to the parameters, however, the performance
of PSOMS is stable.

IV. CONCLUSIONS

This study has proposed a Particle Swarm Optimization with
Map Structure (PSOMS). All particles of PSOMS are con-
nected to adjacent particles by neighborhood relation, which
dictates the topology, of the 2-dimensional map. Each particle
is updated depending on the neighborhood distance between it
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Fig. 4. Results for Rastrigin functionf2 with different parameters. (a) Using
differentw. c1 = c2 is fixed as 1.6 for PSO and as 1.8 for PSOMS. (b) Using
different c1(= c2). w is fixed as 0.7 for PSO and as 0.8 for PSOMS.

and a winner, whose function value is best among all particles.
In the simulation results, the searching efficiency of PSOMS
is better than PSO. Furthermore, we have confirmed that the
parametrical dependence of PSOMS is not stronger than PSO.
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