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Abstract— Some chaotic systems have two coexistence attrac-
tors depending on initial values in same parameters. In these
systems, changing parameters cause switching phenomena of two
attractors. In this study, we investigate switching phenomena of
coexistence attractors in an one-dimensional map and a chaotic
circuit. The purpose of this study is a comparison a element of
CML with a element of coupled chaotic circuits. Using results
of this study, we will investigate the relationship between CML
and coupled chaotic circuits.

I. INTRODUCTION

There are many studies of coupled systems. Especially,
coupled chaotic systems attract many researchers’ attentions
because they exhibit a large variety of interesting nonlinear
phenomena. One of famous coupled chaotic systems is the
Coupled Map Lattice (CML) proposed by Kaneko [1]. CML
has been investigated by many researchers and many complex
phenomena, for instance, spatio-temporal phenomena, cluster-
ing and so on, have been reported. However, this system is
a discrete-time system. Some important phenomena including
coupled chaotic systems may be lost by time discretization.
Therefore, CML should be compared with continuous-time
systems. One of the continuous-time system is coupled chaotic
circuits. By the reason that characteristics of circuit elements
are low price and high quality, you can get elements easily
and the repeatability of the experimental results is very high.
Additionally, experiments can be carried out in a short time.
Coupled chaotic circuits are studied actively. In these studies,
phase states or synchronizations are studied mainly.

On the other hands, some chaotic systems have two co-
existence attractors depending on initial values in same pa-
rameters [2]-[4]. In these systems, changing parameters cause
switching phenomena of two attractors. We consider that
matching two attractors in coupled systems which have two
coexistence attractors means the phenomenon like a very low
synchronization. By investigating switching phenomena in the
system, it is expected that some interesting phenomena are
observed in coupled systems which have two coexistence
attractors.

In this study, we investigate switching phenomena of co-
existence attractors in an one-dimensional map and a chaotic
circuit. The one-dimensional map described by a third-order
polynomial function. The chaotic circuit is Shinriki-Mori
circuit[2][3]. The purpose of this study is the comparison be-

tween chaotic elements of CML and coupled chaotic circuits.
Namely, results of this study can make a contribution to the
comparison between CML and coupled chaotic circuits.

II. SYSTEM MODELS

A. Chaotic Map
The one-dimensional map using in this study is shown as

following equation.

xn+1 = ax3
n + cxn. (1)

In order to investigate switching phenomena, a third-order
polynomial function are used. Figures 1 show the one-
dimensional map using in this study. Two coexistence attrac-
tors are observed (red and blue.) In the cases of Fig. 1(a)
and (b), same parameters and different initial values are used.
By increasing c, switching phenomena are observed in Fig. 1
(c). These are symmetric about the origin. Figure 2 shows the
one parameter bifurcation diagram of Eq. (1). The route from
periodic orbits via period doubling bifurcations to chaos are
observed. Switching phenomena are observed from β = 2.60
to β = 3.00. In order to investigate switching phenomena,
we define region D+ and D− as right and left side attractors
of Figs. 1 respectively. Transitional conditions are shown as
follows.

D+ → D−: when x > 0 and becomes x < 0.
D− → D+: when x < 0 and becomes x > 0.

(2)

B. Chaotic Circuit

Figure 3 shows the chaotic circuit used in this study. The
circuit equation is described as follows.

L
di

dt
= v1,

C
dv1

dt
= −i − id,

C0
dv2

dt
= gv2 + id,

(3)

where,

id =


a(v1 − v2 − Vth), v1 − v2 > Vth,

0, −Vth ≤ v1 − v2 ≤ Vth,

a(v1 − v2 + Vth), v1 − v2 < −Vth.

(4)
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Fig. 1. The one-dimensional map described by a third-order polynomial
function. (a) a = −2.75 and c = 2.54. Initial value of x is −0.4. (b)
a = −2.75 and c = 2.54. Initial value of x is 0.4. (c) a = −2.75 and
c = 2.80.

Fig. 2. The one parameter bifurcation diagram of Eq. (1). a = −2.75 and
1 < c < 3. Red: the initial value of x is 0.4. Blue: the initial value of x is
-0.4.

Two diodes are modeled as a piece-wise linear function shown
in Fig. 4. Changing variables and parameters as follows,

x =
1

Vth

√
L

C
· i, y =

1
Vth

· v1, z =
1

Vth
· v2

α = a

√
L

C
, β = g

C

C0

√
L

C
, γ =

C

C0
,

d

dt
= ” · ”

(5)
Normalized circuit equation is described as follows.

ẋ = y,

ẏ = −x − f(y − z),

ż = βz + γf(y − z),

(6)

CC Lg 0

Fig. 3. Shinriki-Mori chaotic circuit.
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Fig. 4. Diodes model.

where,

f(y − z) =


α(y − z − 1), y − z > 1,

0, −1 ≤ y − z ≤ 1,

α(y − z + 1), y − z < −1.

(7)

We carry out computer simulations using this equation.
Figures. 5 show some computer simulation results. Horizontal
axis is z. Vertical axis is y. Two attractors shown in Fig.5 (a)
and Fig.5 (b) are observed in same parameters. Here, we define
region D+ and D− as right and left side attractors of Figs. 5
respectively. Transitional conditions are shown as follows.

D+ → D−: when y − z > −1 and becomes y − z < −1.
D− → D+: when y − z < 1 and becomes y − z > 1.

(8)
Increasing β, coexistence of attractors are observed shown
as Fig. 5 (c). Figure 6 show the one parameter bifurcation
diagram of the chaotic circuit. The case that the initial value is
0.11 is shown as red. The case that the initial value is −0.11
is shown as blue. Switching phenomena are observed from
β = 0.56 to β = 0.68. In this area, phenomena do not depend
on the initial value.

III. SWITCHING PHENOMENA

A. Chaotic Map

Figure 7 shows the magnification of a third-order polyno-
mial function using in this study. In the case of q < x < p,
switching are occurred. In the case of 0 < x < q, switching are
not occurred. In order to carry out the theoretical analysis, we
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Fig. 5. Computer simulation results of the chaotic circuit. α = 10.0 and
γ = 2.605. (a) β = 0.54. (b) β = 0.54. (c) β = 0.56. Differential initial
values are used in (a) and (b).

Fig. 6. The one parameter bifurcation diagram of the chaotic circuit. α =
−2.75 and 0.4 < β < 0.68.

assume that the distribution of x is homogeneous distribution.
Using this assumption, we can described the switching rates
SRI as follows.

SRI = 1 − q

p
= 1 −

√
c

−a

2c

3

√
−c

3a

. = 1 − 3
√

3
2c

. (9)

Figure 8 shows the relationship between parameter c and
switching rates. Green line shows SRI , Blue and Red lines
show switching rates calculated by computer simulations.
Figures 9 show computer simulation results. In Fig. 8, blue and
red lines are the same. Because this map is symmetric about
the origin. Some local maximums are observed by periodic

orbits shown as Fig. 9 (b) and (d). We consider that the reason
of differences between SRI and switching rates are that the
distribution of x is not homogeneous. However, these gradients
are similar. We will investigate the distribution of x in this map
and improve the SRI .

Fig. 7. The magnification of a third-order polynomial function.

B. Chaotic Circuit
Figure 10 shows the relationship between parameter β

and switching rates of the chaotic circuit. Horizontal axis
shows β and vertical axis shows switching rates. Figures 11
show some computer simulation results. Some periodic orbits
(b)(c)(d) are observed. In these areas, switching phenomena
are stable states. In another areas, switching rates are increased
by increasing β. This system is not symmetric in the origin.
Therefore, red and blue lines are not the same. However, very
similar results are confirmed. For instance, blue and red lines
are corresponding to blue and red in Figs. 5 and Figs. 9.

C. Comparison
Both of them, periodic orbits, period doubling bifurcation,

chaos, switching phenomena are observed. Increasing parame-
ter c or β increase switching rates. These results show that two
system are similar. Major difference is that the chaotic map is
symmetry system. In order to investigate coupling system, we
will closer this map to the chaotic circuit.

IV. CONCLUSIONS

We have investigated switching phenomena of coexistence
attractors in an one-dimensional map and a chaotic circuit.
Using obtained results, we will investigate the switching
phenomena of CML and coupled chaotic circuits.
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Fig. 8. Switching rates of the chaotic map. a = −2.75, 2.60 < c < 3.00

(a) c = 2.65 (b) c = 2.70

(c) c = 2.76 (d)c = 2.84

(e) c = 3.00

Fig. 9. Computer simulation results of the chaotic map. a = −2.75
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Fig. 10. Switching rates of the chaotic circuit. α = 10.0, γ = 2.605 and
0.56 < β < 0.68.

(a) β = 0.561 (b) β = 0.588

(c) β = 0.620 (d) β = 0.655

(e) β = 0.666

Fig. 11. Computer simulation results of the chaotic circuit. α = 10.0,
γ = 2.605
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