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Abstract 
Chaos i s  introduced to cryptology. As an example of the applications, a secret key cryptosystem 

by iterating a one dimensional chaotic map i s  proposed. This system is based on the characteristics 

of chaos, which are sensitivity of parameters, sensitivity of initial points, and randomness of sequences 

obtained by iterating a chaotic map. A ciphertext is obtained by the iteration of a inverse chaotic 

map from an initial point, which denotes a plaintext. If the times of the iteration is large enough, the 

randohinets of the encryption and the decryption function i s  so large that attackers cannot break this 

cryptosystem by statistic characteristics. In addition to  the security of the statistical point, even if the 

cryptosystern is composed by a tent map, which is one of the simplest chaotic maps, setting a finite 

computation size avoids a ciphertext only attack. The most attractive point of the cryptosystem is 

that the cryptosystem is  composed by only iterating a simple calculations though the information rate 

of the cryptosystem is about 0.5. 

1 Introduction 

Random oscillation of the solutions in deterministic systems described as differential or difference equa- 

tions, is called chaos [l]. Recently many types of chaos-generating systems have been proposed and 

analyzed in various fields. Especially, chaotic behavior of solutions in  some types of onedimensional 

difference equations 

X,+I = F ( X )  X, E [a, 11 (1) 

is investigated in detail [2]. Onedimensional discrete maps F generating chaotic solutions are called 

chaotic maps. 

Chaotic solutions have the following features. 

1. Sensitivity of parameters. - If a parameter (the shape of F )  varies slightly, two sequences ob 
tained from repeated calculations on a chaotic map from an initial point, eventually become quite 

different. 

2. Sensitivity of initial points. - If an initial point X, varies slightly, two sequences obtained from 

repeated calculations on a chaotic map with a parameter, eventually become quite different. 
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3. Randomness. - Solutions starting from almost a l l  X o  in [0, I] wander in [0,1] a t  random and their 

distribution i s  uniform. 

Therefore. if one doesn't know both the exact parameter and the exact initial point, he cannot expect 

the motion of the chaotic solution. 

In this paper, we propose a secret key cryptosystem by iterating a onedimensional map F generating 

chaos. This system is based on repeated calculations on a chaotic map as X ,  = F"(X0) .  We use the 

parameter Q of the map for a secret key, a n d  a point p in an interval [0,1] for plaintext. Encryption 

function is n-times composite of F-I and decryption function i s  n-times composite of F. Therefore, 

encryption and decryption are achieved by only repeating a very simple calculation. 

Generally, because F i s  rn to one map, one plaintext has m" ciphertexts and any one of m" 

ciphertexts can be deciphered only using the secret key. Therefore, senders can select the ciphertexts 

by any arbitrary random generator. We determine the parameter sizes to prevent statistic attacks. If 
the times of composite is large enough, it is expected that ciphertext variations act a t  random and are 

independent of key variations, because of the characteristics of chaotic maps. 

We also discuss about a ciphertext only attack. In the following section, we explain our cryptosystern 

by iterating a tent map. Although tent map has linearity, we can prevent the ciphertext only attack 

from breaking our cryptosystem by setting finite computation size. 

2 A Secret Key Cryptosystem by Iterating a Tent Map 

In this section, we explain our cryptosystem. As an example of chaotic maps, we use tent map which 

is one of the most popular and the simplest chaotic maps. 

2.1 Preliminaries 

Tent map is a onedimensional and piecewise linear map. Figures l (a )  and l(b) show a tent map and 

i ts  inverse map. These maps transform an interval [O, 11 onto itself and contain only one parameter a, 

which represents the location of the top of the tent. These maps are described as follows. 

Xk-1 = c * x k  

or (3) 
x k - 1  = (a - 1)xk  + 1. 

F-' : 

Sequences calculated from arbitrary initial point with iterating F act chaotically because the function 

F is expansionary everywhere in  the interval [0,1]. Such the sequences obtained by iterating a tent 

map distribute in uniform U(0 , l )  [3]. 
F is two to one map and F-' is one to two map. Therefore, F" is 2" t o  one map and F-" is one 

to 2" map. Since X = F ( F - ' ( X ) )  is always satisfied, X = F"(F-"(X) )  i s  also satisfied. 
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2.2 Cryptosystem 

(1) Secret Key 

A parameter a denotes a secret key. If a sender and a receiver have a secret key, they are able to 

calculate the function F accurately. 

(2) Encryption 

i) - Set an initial point as a plaintext p ,  where 0 < p < 1. 

ii) - Calculate n-times composite of the inverse map F-"(p) by calculating F-' repeatedly. 

c = F-'(F-'(. . . F-'(p)  * .  .)) = F-"(p).  (4) 

On each calculation, select one of two equations of F-' in eq. (3) in any arbitrary way. This 

means that one plaintext has 2" ciphertexts and one of 2" ciphertexts is sent to the receiver. 

Finally, send the value C to the receiver. 

(3) Decryption 

Calculate n-times composite of the map F"(C) by calculating F repeatedly and recover the 

plaintext p .  

p = F ( F ( .  . . F(C) .  . .)) = F"(C) = F"(F-"(p)). (5) 

Note that only a i s  required for this computation. The information about which of two 

equations is used for each encryption process ( P I ) ,  is  not necessary for the decryption 

process. Any one of 2" ciphertexts, even when the coin-flipping is used in the encryption 

process, is deciphered without fail. 

Figure 2 visualizes an encryption and a decryption. Firstly, a sender sets an initial point p as a 

plaintext. On the first step of the encryption, he chooses right or left. If he chooses right, p is mapped 

to X-' in the figure. The sender repeats this n times. The receiver only has to do is to trace inversely. 

The plaintext p which is eractly equal to a, i s  not a singular point. It is easy to confirm that the 

plaintext is enciphered similar to another plain texts: simply choose right or left side as the other 

plaintexts. 

The encryption and the decryption are achieved by repeating a simple calculation. They require n 

times m.sltiplications. On the each calculation, it is necessary to set a computation size. There are 

two reasons to set it. The first reason is that memory size of computer is finite. The second reason 

is about security of our cryptosystem. Because tent map is piecewise linear, our cryptosystem also has 

linearity. If ciphertext is described with the whole size digits, there exists a ciphertext only attack to 

our cryptosystem because of its linearity. We discuss about this problem in the following section. 
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3 Discussions 

In this section, we discuss about the security and performances of our cryptosystem. Firstly, we d e  

termine the size of the parameters to prevent statistical attack and stepby-step attack. Secondly, 

we discuss about the size of ciphertexts to prevent failing decryption. Thirdly, we discuss about the 

ciphertext only attack. And finally, we discuss about the other chaotic maps to increase the security. 

3.1 Requirements of the Parameters 

3.1.1 

Figures 3(a) and 3(b) show the distribution of the ciphertexts for different parameters. When a is close 

to 0. the distribution of ciphertexts is narrow as in figure 3(a) and eavesdroppers have larger probability 

of the achievement of attacking the key. Similarly, a must not be near 1. However when Q i s  around 

0.5 as in figure 3(b), the distribution of the ciphertexts is uniform enough. Therefore, we assume that 

Q should be between 0.4 and 0.6. 

Secret Key and Plaintext Size 

The key space size and the plaintext size are required 64 bits against stepby-step attack. If they 

are described with 20 digits, both of the key space size and the plaintext size are about 64 bits. 

3.1.2 The Time6 of Mapping : n 

If a ciphertext is deciphered with two keys which are slightly different, the sequences are separating as 

n is getting larger, and eventually they become independent. Therefore, we determine n so as to satisfy 

the following two conditions. 

i) By selecting some keys and computing plaintexts by deciphering a ciphertext, the distribution of 

the plaintexts for respective keys i s  uniform distribution Lr(0,l). 

ii) Changing the keys chosen in i) slightly makes the distribution independence from the distribution 

in i). 

If these two conditions are satisfied, attackers cannot expect the plaintext from the ciphertext, as far 

as they do not know the accurate key. 

Figure 4 shows the distribution of plaintexts obtained from a ciphertext with 1000 keys, where 

n = 75. It is shown that the distribution is consistent with uniform distribution U(0,l). Therefore, 

condition i) is satisfied. 

In order to test the condition ii), we use x2 test. The concept of the methods is as follows. Further 

details about the test of independence are in [4]. 

i) Divide the interval [0,1] into I class intervak. 

ii) Compute the N pairs of F,"(C) and F,+b,"(C), and make 1 x 1 contingency table (frequency 

= k i j ) .  
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... 
IN) Compute 

>=1 i=l 

If this value is smaller than the upper 5% point of x2  of which the number of the degrees of 

freedom is (I - 1) x (I - 1). the independence is not rejected using the level of significance 0.05. 

Figure 5 shows times of mapping n versus x 2 ,  where 1 = 11, N = 1000 and Aa = 

upper 5% point of x:,..,, is  124.3, the independence is not rejected when n 2 73. 
Leaving a safety margin, we determine that the times of mapping n i s  75. 

Because the 

3.2 Ciphertext Size 

Ciphertext size is equal to calculation size. If we have a computer with infinite memory, it is clear that 

the decryption process has no error. However, digital computer's memory is finite, so calculation error 

always exist. For this reason, we determine the size S not to occur any calculation error. 

Firstly, we discuss about error in encryption process. Encryption function is contractional and i ts 

on each step of encryption and it i s  accumulated. coefficient is about 0.5. At worst, error is 0.5 x 

Consequently, the error in encryption process is a t  worst 

Secondly, we discuss about error in decryption process. Decryption function is expansionary and i ts 

coefficient is about 2. Consequently, the error in decryption process is a t  worst 

n-1 

Ed = 0.5 x lo-' x c 2k. 
k=O 

Totally, computation error i s  a t  worst 

E = 2" x E, + Ed = 3 x 2n-' x lo-'. (9) 

If this error is smaller than 0.5 x 

should be 

plaintext i s  always recovered. Consequently, calculation size 

s > nlogl,2 + log103 + 20 = 43.05. (10) 

Figure 6 shows the rate of the correct decryption versus the significant digits obtained by a computer 

experiment. Since the times of composite of inverse map is 75, the size of ciphertext space is 20 digits 

+75 bits (= 42.58 digits). Actually, some more digits are required because computation error is 

accumulated by each step. As a result, if 44 digits is taken for the computation size, the decryption 

process is always correct. 

We briefly discuss about the information rate of the cryptosystem. The information rate R i s  

- -  2o N 0.5. R =  plaintext size - 
ciphertext size 44 
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If you use FEAL or DES, for example, with a 32 bits message and a 32 bits random number, this system 

is similar to our cryptosystern, because its information rate is 0.5 and one message has Z32 ciphertexts, 

which all can be deciphered with the same decryption key. However, our cryptosystem is only composed 

of an easy function, which is an interesting point of our cryptosystem. 

3.3 Ciphertext Only Attack 

Because tent map is piecewise linear. n-times composite of tent map is also piecewise linear. Therefore, 

our cryptosystem has also linearity. If computation size is infinite, our cryptosystem is attacked because 

of i t s  linearity. First we show the ciphertext only attack, and then we show why this attack does not 

succeed to break our cryptmystem. 

From the encryption function eq. (3), almost all xk are divided into the following two states,  and 
thus almost a l l  ciphertexts are divided into these states. 

State 1 : a multiple of a 

State 2 : 1+ a multiple of a 

[Proof] 

i) First, we think the case when xk is in state 1. If the sender chooses the left side of the tent map 
a t  this step, & - I ,  which i s  the next &, is in the state 1 because 

xk-1 = a(aAl), (12) 

where xk = aA1. If the sendcr chooses the right side of the tent map a t  this step, x k - 1  is in 

state 2 because 

xk-1 = (a - l)a& + 1 = a(a - 1)Ag  + 1, (13) 

where X, = aA2.  

ii) Second, we think the case when X,, is in state 2. Whichever the sender chooses, Xk-1 is in state 

1 because 

XLI = @(&A3 + I), ( 14) 

where xk = aA3 + 1, and 

where xk = aA, + 1. 

iii) Finally, we think the first step of the encryption. Whatever plaintext p is, just after the sender 

chooses the kft side of the tent map, xk is in state 1. After this state, x k  is  in state 1 or state 

2 as we mentioned above. The only one case which Xk is never in these two states is that the 

sender chooses the right side of the tent map during all the encryption steps. If the sender chooses 

the side randomly, the provability of this is Yr5. Consequently, almost a l l  ciphertexts are divided 

into these states. 
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This fact enables attackers the following attack. If an attacker can eavesdrop two ciphertexts CO 
a n d  Cl, he can obtain the key a after at most four times tests like 

where bo and b1 are 1 or 0. This is the ciphertext only attack. 

Next we show why this attack does not succeed to  break our cryptosystem if we set computation 

size. If a sender calculated a ciphertext whose size was infinite, it is described by 

key size x n + plaintext size = 1520 digits (17) 

because key size and plaintext size are both 20 digits, and n = 75. If he sent the ciphertext of this size 

to receiver and an attacker could eavesdrop it, the attacker can obtain the key ct because the linearity of 

our cryptosystem sti l l  exists. However, ciphertext can be described by only 44 digits. This means that 

the attacker lacks the information to succeed the attack. In other words, although our cryptosystem is 

described by linear functions, setting computation size saves our cryptosystem from the attack. 

3.4 Other Chaotic Mapa 

As we mentioned above, the ciphertext only attack is avoided by the setting computation size but 

the tent map cryptosystem st i l l  has linearity. There will exist other types of attacks such as chosen 

plaintext attack, known plaintext attack, and so on. We expect that these attack will be based on the 

characteristics of the linearity. We recommend other chaotic maps to avoid these attacks. For example, 

a certain of non-linear onedimensional chaotic map meets this condition. Further research is necessary 

for this aspect. 

4 Conclusions 

We have proposed a new secret key cryptosystem by iterating a chaotic map. In the case that we use 

a tent map as a chaotic map, we determine the parameter sizes to prevent statistic attacks by x a  test, 

whose result is that the times of mapping should be larger than 73 if the key size and the plaintext size 

are both 20digits. We verify that correct decryption is achieved if the computation size is larger than 

44 digits. We also verify that the computation size prevent the ciphertext only attack from breaking 

our cryptosystem. In the proposed system, a plaintext has 2" ciphertexts and one of 2" ciphertexts is 

sent to  the receiver. Even if the ciphertext is chosen by any arbitrary way, the receive: can obtain the 

plaintext only using the secret key. 
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Fig.1 (a) Tent map. 
(b) Inverse tent map. 
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Fig.2 Encryption and Decryption. 
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Fig. 4 The histogram of plaintexts obtained from the same ciphertext 

for 1000 keys (C = 0.3987) 

:20 intervals [ i /20 ,  ( i  + 1)/20), i = 0,. . . ,19. 
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Fig. 5 The results of xa test. 
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Fig. 6 The rate of correct decryption. 

(Computer simulation : 1000 samples) 
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