
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.6 JUNE 2008
1463

PAPER

Self-Organizing Map with False-Neighbor Degree between Neurons
for Effective Self-Organization

Haruna MATSUSHITA†a), Student Member and Yoshifumi NISHIO†b), Member

SUMMARY In the real world, it is not always true that neighboring
houses are physically adjacent or close to each other. in other words,
“neighbors” are not always “true neighbors.” In this study, we propose
a new Self-Organizing Map (SOM) algorithm, SOM with False-Neighbor
degree between neurons (called FN-SOM). The behavior of FN-SOM is in-
vestigated with learning for various input data. We confirm that FN-SOM
can obtain a more effective map reflecting the distribution state of input
data than the conventional SOM and Growing Grid.
key words: self-organizing maps, clustering, feature extraction, visualiza-
tion

1. Introduction

Since we can accumulate a huge amount of data in recent
years, it is important to investigate various clustering meth-
ods [1]. The Self-Organizing Map (SOM) has attracted at-
tention for its clustering properties. SOM is an unsupervised
neural network introduced by Kohonen in 1982 [2] and is
a simplified model of the self-organization process of the
brain. SOM obtains statistical features of input data and ap-
plies them to a wide field of data classifications. We can
obtain the map reflecting the distribution state of input data
using SOM. In the learning algorithm of SOM, a winner,
which is a neuron with the weight vector closest to the input
vector, and its neighboring neuron are updated, regardless
of the distance between the input vector and the neighbor-
ing neuron. For this reason, if we apply SOM to cluster-
ing of the input data which include some clusters located at
distant locations, there are some inactive neurons between
clusters. Because inactive neurons are on a part without the
input data, we are misled into thinking that there are some
input data between clusters.

Meanwhile, in the real world, it is not always true that
neighboring houses are physically adjacent or close to each
other. For example, a case that the next-door house is at
the top of a mountain whereas my house is at the foot (as
Fig. 1(a)), and another case that there is a river, which does
not have a bridge, between my house and my next-door
house (as Fig. 1(b)). This means that “neighbors” are not
always “true neighbors.” In addition, the relationship be-
tween neighborhoods is not fixed, but keeps changing with

Manuscript received October 26, 2007.
Manuscript revised February 8, 2008.
†The authors are with the Department of Electrical and Elec-

tronic Engineering, Tokushima University, Tokushima-shi, 770–
8506 Japan.

a) E-mail: haruna@ee.tokushima-u.ac.jp
b) E-mail: nishio@ee.tokushima-u.ac.jp

DOI: 10.1093/ietfec/e91–a.6.1463

(a) (b)

Fig. 1 What are the “neighbors”? The houses B and C is A’s next-door
neighbors on the left and on the right, respectively. (a) The house B is at the
top of a mountain. (b) The river between A and B does not have a bridge.

time. It is important to change the neighborhood relation-
ship flexibly according to the situation.

On the other side, the synaptic strength is not constant
in the brain. So far, the Growing Grid network was proposed
in 1985 [3]. Growing Grid increases the neighborhood dis-
tance between neurons by increasing the number of neurons.
However, there is not much research changing the synaptic
strength even though there are algorithms which increase the
number of neurons or consider rival neurons [4], [5].

In this study, we propose a new SOM algorithm, SOM
with False-Neighbor degree between neurons (called FN-
SOM). False-neighbor degrees are allocated between adja-
cent rows and adjacent columns of FN-SOM. We find the
neuron q which has never become the winner, and the neu-
rons, which is the most distant from q in a set of direct topo-
logical neighbors of q, are said to be “false neighbors” of
q. The initial values of all of the false-neighbor degrees are
set to zero, however, they are increased with learning, and
the false-neighbor degrees act as a burden of the distance
between map nodes when the weight vectors of neurons are
updated. FN-SOM changes the neighborhood relationship
more flexibly according to the situation and the shape of
data.

We explain the learning algorithm of FN-SOM in de-
tail in Sect. 4. The learning behaviors of FN-SOM for 2-
dimensional input data and 3-dimensional data, which have
some clustering problem, are investigated in Sect. 5. In ad-
dition, we apply FN-SOM to a real world data set, Iris data.
Learning performance is evaluated both visually and quanti-
tatively using three measurements. Furthermore, the results
are compared with those obtained by the conventional SOM
and Growing Grid. We can confirm that there are few inac-
tive neurons using FN-SOM, and FN-SOM can obtain the
most effective map reflecting the distribution state of input

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

1464
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.6 JUNE 2008

data in the three algorithms. In addition, we investigate the
cluster structure of the learned map by calculating distances
between neurons in order to confirm the clustering ability of
FN-SOM. As the results, we confirm that FN-SOM can ob-
tain more effective clustering map than SOM. In Sect. 6, in
order to utilize the false-neighbor degree effectively, we pro-
pose a simple visualization method using the false-neighbor
degrees. We apply this method to the result of the iris data,
and we confirm that the method using false-neighbor de-
grees can obtain more effective clustering result than SOM.

2. Self-Organizing Map

First, we explain the learning algorithm of the conventional
Self-Organizing Map (SOM). SOM consists of n × m neu-
rons located at a regular low-dimensional grid, usually a 2-
D n × m rectangular grid. The basic SOM algorithm is it-
erative. Each neuron i has a d-dimensional weight vector
wi = (wi1, wi2, · · · , wid) (i = 1, 2, · · · , nm). The initial values
of all the weight vectors are given over the input space at
random. The range of the elements of d-dimensional input
data x j = (x j1, x j2, · · · , x jd) (j = 1, 2, · · · ,N) are assumed
to be from 0 to 1.

(SOM1) An input vector x j is inputted to all the neurons at
the same time in parallel.
(SOM2) Distances between x j and all the weight vectors are
calculated. A winner, denoted by c, is the neuron with the
weight vector closest to the input vector x j;

c = arg min
i
{‖wi − x j‖}, (1)

where ‖ · ‖ is the distance measure, Euclidean distance.
(SOM3) The weight vectors of the neurons are updated as

wi(t + 1) = wi(t) + hc,i(t)(x j − wi(t)), (2)

where t is the learning step. hc,i(t) is called the neighborhood
function and is described as a Gaussian function;

hc,i(t) = α(t) exp

(
−‖ri − rc‖2

2σ2(t)

)
, (3)

where ‖ri − rc‖ is the distance between map nodes c and i
on the map grid, α(t) is the learning rate, and σ(t) corre-
sponds to the width of the neighborhood function. Both α(t)
and σ(t) decrease with time, in this study, we use following
equations;

α(t) = α0(1 − t/tmax), σ(t) = σ0(1 − t/tmax), (4)

where α0 and σ0 are the initial values of α and σ, respec-
tively, and tmax is the maximum number of the learning.
(SOM4) The steps from (SOM1) to (SOM3) are repeated
for all the input data.

3. Growing Grid

We explain an overview of the Growing Grid. The network

of Growing Grid consists of nm neurons located at a rectan-
gular n × m grid. Each neuron has a d-dimensional weight
vector wi as the conventional SOM. A winning frequency γi

is associated with each neuron and is set to zero initially.
An input vector x j is inputted to all the neurons, and a

winner c is found according to Eq. (1). The weight vectors
of the neurons are updated according to

wi(t + 1) = wi(t) + hGc,i(t)(x j − wi(t)), (5)

where hGc,i(t) is the neighborhood function of Growing
Grid;

hGc,i(t) = α0 exp

⎛⎜⎜⎜⎜⎝−dg
2(c, i)

2σ0
2

⎞⎟⎟⎟⎟⎠ , (6)

where α0 is a constant learning rate, and σ0 is a constant
width parameter. dg(c, i) is the distance on the grid between
a winner c and each neuron i and is calculated by city-block
distance (which is also known as L1-norm). At each learning
step, the winning frequency of c is incremented by γc

new =

γc
old + 1.

After n × m × λg number of learning steps have been
performed, we determine the neuron q which has become
the winner most frequently;

q = arg max
i
{γi}. (7)

We find the neuron f which is with the most different weight
vector in 1-neighbor of q. We insert a new row (or column)
between q and f . The weight vectors of the new neurons are
interpolated from their neighbors which does increase the
density of weight vectors in the vicinity of wq. The number n
of rows (or m of columns) are increased, then all the winning
frequencies are reset. We continue with the next round of
learning unless nm ≥ nmmax is fulfilled.

After the growth process is finished, we fine-tune the
weight vectors using a decreasing learning rate. We per-
form t′max = n × m × λ f steps according to Eq. (5) using
α(t′) = α0(α1/α0)t′/t′max . t′ denotes the learning step in the
fine-tuning phase.

4. SOM with False-Neighbor Degree (FN-SOM)

We explain a new SOM algorithm, SOM with False-
Neighbor Degree between neurons (FN-SOM). False-
neighbor degrees of rows Rr (1 ≤ r ≤ n−1) are allocated be-
tween adjacent rows of FN-SOM with the size of n×m grid
(as Fig. 2). Likewise, false-neighbor degrees of columns Ck

(1 ≤ k ≤ m − 1) are allocated between adjacent columns of
FN-SOM. In other words, R1 means the false-neighbor de-
gree between neurons of the 1st row and the 2nd row, and
C4 is the false-neighbor degree between neurons of the 4th
column and the 5th column. The initial values of all of the
false-neighbor degrees are set to zero, and the initial val-
ues of all the weight vectors are given over the input space
at random. Moreover, a winning frequency γi is associated
with each neuron and is set to zero initially.

MATSUSHITA and NISHIO: SELF-ORGANIZING MAP WITH FALSE-NEIGHBOR DEGREE BETWEEN NEURONS
1465

Fig. 2 A false-neighbor degree of row Rr (1 ≤ r ≤ n− 1) and column Ck

(1 ≤ k ≤ m − 1). Neurons of FN-SOM are located at a n × m rectangular
grid.

Learning Step
(FN-SOM1) An input vector x j is inputted to all the neu-
rons at the same time in parallel.
(FN-SOM2) Distances between x j and all the weight vec-
tors are calculated, and the winner c is found according to
Eq. (1).
(FN-SOM3) Increment of the winning frequency of winner
c by γc

new = γc
old + 1.

(FN-SOM4) The neighboring distances between the winner
c and the other neurons are calculated. For instance, for two
neurons s1, which is located at r1-th row and k1-th column,
and s2, which is located at r2-th row and k2-th column, the
neighboring distance is defined as the following measure;

df (s1, s2) =

⎛⎜⎜⎜⎜⎜⎜⎝|r1 − r2| +
r2−1∑
r=r1

Rr

⎞⎟⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎜⎝|k1 − k2| +
k2−1∑
k=k1

Ck

⎞⎟⎟⎟⎟⎟⎟⎠
2

, (8)

where r1 < r2, k1 < k2, namely,
∑r2−1

r=r1
Rr means the sum

of the false-neighbor degrees between the rows r1 and r2,
and

∑k2−1
k=k1

Ck means the sum of the false-neighbor degrees
between the column k1 and k2.
(FN-SOM5) The weight vectors of the neurons are updated
as

wi(t + 1) = wi(t) + hF c,i(t)(x j − wi(t)), (9)

where hF c,i(t) is the neighborhood function of FN-SOM:

hF c,i(t) = α(t) exp

(
−df (c, i)

2σ2(t)

)
. (10)

(FN-SOM6) If
∑nm

i=1 γi ≥ λ is satisfied, we find the false-
neighbors and increase the false-neighboring degree, ac-
cording to steps from (FN-SOM7) to (FN-SOM10). If not,
we perform step (FN-SOM11). In other words, we consider
the false-neighbors every time when the learning steps are
performed for λ input data.

Considering False-Neighbors
(FN-SOM7) We find a set of neurons S which have never

(a) (b)

Fig. 3 Increment the false-neighbor degree. (a) q and its false-neighbor
fq are in the 3rd row and in the 2nd and 3rd column, respectively. Then, the
false-neighbor degree C2 between columns 2 and 3 is increased by Eq. (13).
(b) q and fq are in the 2nd column and in the 4th and 3rd row, respectively.
Then, the false-neighbor degree R3 between rows 3 and 4 is increased by
Eq. (14).

become the winner:

S = {i | γi = 0}. (11)

If the neurons, which have never become the winner, do not
exist, namely S = ∅, we return to (FN-SOM1) without con-
sidering the false-neighbors.
(FN-SOM8) A false-neighbor fq of each neuron q in S is
chosen from the set of direct topological neighbors of q de-
noted as Nq1. fq is the neuron whose weight vector is most
distant from q:

fq = arg max
i
{‖wi − wq‖}, q ∈ S , i ∈ Nq1. (12)

(FN-SOM9) A false-neighbor degree between each q and
its false-neighbor fq, Rr or Ck, is increased. If q and fq are
in the r-th row and in the k-th and (k + 1)-th column (as
Fig. 3(a)), the false-neighbor degree Ck between columns k
and k + 1 is increased according to

Ck
new = Ck

old +
n + m
2nm

. (13)

In the same way, if q and fq are in the k-th column and in the
(r + 1)-th and r-th row (as Fig. 3(b)), the false-neighbor de-
gree Rr between rows r and r+1 is also increased according
to

Rr
new = Rr

old +
n + m
2nm

. (14)

The increment (n + m)/2nm is the average of 1/n and 1/m.
This is because Eqs. (13) and (14) are performed for all q
in the set S , therefore, Ck or Rr is increased at most n or m
times for every λ inputs.
(FN-SOM10) The winning frequency of all the neurons are
reset to zero: γi = 0.

(FN-SOM11) The steps from (FN-SOM1) to (FN-SOM10)
are repeated for all the input data.

1466
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.6 JUNE 2008

(a) (b) (c) (d)

Fig. 4 Learning results of three algorithms for Target data. (a) Input data. (b) Conventional SOM.
(c) Growing Grid. (d) FN-SOM.

5. Experimental Results

We apply FN-SOM to various input data and compare FN-
SOM with the conventional SOM and Growing Grid.

5.1 For 2-dimensional Data

First, we consider 2-dimensional input data as shown in
Fig. 4(a). The input data is Target data set, which has a clus-
tering problem of outliers [6]. The total number of the input
data N is 770, and the input data has six clusters which in-
clude 4 outliers. All the input data are sorted at random.

Both the conventional SOM and FN-SOM have nm =
100 neurons (10 × 10). Growing Grid starts learning with
a 2 × 2 neurons, and new rows and columns are inserted as
long as the number of neurons is less than nmmax = 100.
We repeat the learning 20 times for all input data, namely
tmax = 15400. The parameters of the learning are chosen as
follows;
(For SOM)

α0 = 0.3, σ0 = 4,

(For Growing Grid)

α0 = 0.1, σ0 = 0.9, λg = 30, α1 = 0.005, λ f = 100,

(For FN-SOM)

α0 = 0.3, σ0 = 4, λ = 3000,

where we use the same α0 and σ0 to SOM and FN-SOM for
the comparison and the confirmation of the false-neighbor
degree effect.

The learning results of the conventional SOM and the
Growing Grid are shown in Figs. 4(b) and (c), respectively.
We can see that there are some inactive neurons between
clusters. The other side, the result of FN-SOM is shown
in Fig. 4(d). We can see from this figure that there are just
a few inactive neurons between clusters, and FN-SOM can
obtain the more effective map reflecting the distribution state
of input data than SOM and the Growing Grid.

Furthermore, in order to evaluate the learning perfor-
mance of FN-SOM in comparison with the conventional

Table 1 Quantization error Qe, Topographic error Te and Neuron
utilization U for Target data.

SOM Growing Grid FN-SOM

Qe 0.0207 0.0237 0.0191
Te 0.0740 0.2455 0.0442
U 0.8100 0.8137 0.9100

SOM and Growing Grid, we use the following three mea-
surements to evaluate the training performance of the three
algorithms.

Quantization Error Qe: This measures the average dis-
tance between each input vector and its winner [2];

Qe =
1
N

N∑
j=1

‖x j − w̄ j‖, (15)

where w̄ j is the weight vector of the corresponding winner
of the input vector x j. Therefore, the small value Qe is more
desirable.

Topographic Error Te: This describes how well the SOM
preserves the topology of the studied data set [7];

Te =
1
N

N∑
j=1

u(x j), (16)

where N is the total number of input data, u(x j) is 1 if the
winner and 2nd winner of x j are NOT 1-neighbors each
other, otherwise u(x j) is 0. The small value Te is more desir-
able. Unlike the quantization error, it considers the structure
of the map. For a strangely twisted map, the topographic
error is big even if the quantization error is small.

Neuron Utilization U: This measures the percentage of
neurons that are the winner of one or more input vector in
the map [5];

U =
1

nm

nm∑
i=1

ui, (17)

where ui = 1 if the neuron i is the winner of one or more
input data. Otherwise, ui = 0. Thus, U nearer 1.0 is more
desirable and larger value of U means fewer inactive neu-
rons.

MATSUSHITA and NISHIO: SELF-ORGANIZING MAP WITH FALSE-NEIGHBOR DEGREE BETWEEN NEURONS
1467

(a) (b) (c) (d)

Fig. 5 Learning results of three algorithms for Hepta data. (a) Input data. (b) Conventional SOM.
(c) Growing Grid. (d) FN-SOM.

The calculated three measurements are shown in Ta-
ble 1. The quantization error Qe of FN-SOM is the smallest
value in the three algorithms, and by using FN-SOM, Qe
has improved 7.7% from using the conventional SOM. This
means that there are few errors between the input data and
the neurons of the learned map, in other words, FN-SOM
can be most reflecting the distribution state of the input data.
The neuron utilization U of FN-SOM is also the best value
in the three algorithms. It means that 90% of the neurons of
FN-SOM are the winner of one or more input data, namely,
there are few inactive neurons. On the other hand, the topo-
graphic error Te of FN-SOM is the smallest value although
Qe and U are the best values. It means that FN-SOM self-
organizes most effectively with maintenance of top quality
topology. We consider these obtained results. The inactive
neurons are on a part without the input data. Therefore, if
the inactive neurons are few, more neurons can self-organize
the input data of clusters. In consequence, the distance be-
tween each input data and its neurons will be small, namely
the quantization error Qe will be a small value. Further-
more, the neurons of FN-SOM are not affected by the false-
neighbors, so, the neurons can learn more distant for the
distant input data, than SOM learning. For these reasons,
FN-SOM obtains the best results.

5.2 For 3-dimensional Data

Next, we apply the three algorithms to 3-dimensional input
data, Hepta data set [6], as shown in Fig. 5(a). The input
data has a clustering problem of different variances. The
total number of the input data N is 212, and the input data
has seven clusters. All the input data are sorted at random.

We repeat the learning 70 times for all input data,
namely tmax = 14840. The input data are normalized and
are sorted at random. The learning conditions are the same
used in Fig. 4.

The learning results of three algorithms are shown
in Figs. 5(b), (c) and (d), respectively. We can see that
FN-SOM has the fewest inactive neurons between clusters.
Three map quality measures are shown in Table 2. Results
of FN-SOM are the best values in all map quality measures.

Table 2 Quantization error Qe, Topographic error Te and Neuron
utilization U for Hepta data.

SOM Growing Grid FN-SOM

Qe 0.0360 0.0409 0.0306
Te 0.1698 0.1509 0.1462
U 0.6500 0.6863 0.8000

Table 3 Quantization error Qe, Topographic error Te and Neuron
utilization U for Iris data.

SOM Growing Grid FN-SOM

Qe 0.0374 0.0452 0.0323
Te 0.2400 0.2267 0.1667
U 0.7200 0.7048 0.8200

The quantization error Qe of FN-SOM is the smallest value
and has improved 15.0% from using the conventional SOM.
Nonetheless, the topographic error Te of FN-SOM is also
the smallest value, and it has improved 13.9% from using
the conventional SOM and 3.1% from using Growing Grid.
The neuron utilization U of FN-SOM is also the best value
in three SOMs, and it has improved 23.1% from using the
conventional SOM and 16.6% from using Growing Grid.
From these results, we can say that FN-SOM is the most
effective.

5.3 For Iris Data

Furthermore, we apply FN-SOM to the real world cluster-
ing problem. We use the Iris plant data [8] as real data. This
data is one of the best known databases to be found in the
pattern recognition literature [9]. The data set contains three
clusters of 50 instances respectively, where each class refers
to a type of iris plant. The number of attributes is four as the
sepal length, the sepal width, the petal length and the petal
width, namely, the input data are 4-dimension. The three
classes correspond to Iris setosa, Iris versicolor and Iris vir-
ginica, respectively. Iris setosa is linearly separable from
the other two, however Iris versicolor and Iris virginica are
not linearly separable from each other.

We repeat the learning 100 times for all input data,
namely tmax = 15000. The input data are normalized and
are sorted at random. The learning conditions are the same

1468
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.6 JUNE 2008

(a) (b) (c)

Fig. 6 Visualization results of Iris data. Label A, B and C correspond to Iris setosa, Iris versicolor
and Iris virginica, respectively. (a) Conventional SOM. (b) FN-SOM. (c) FN-SOM using false-neighbor
degree.

used in Fig. 4.
The calculated quantization error Qe, the topographic

error Te and the neuron utilization U are shown in Table 3.
We confirm that the quantization error Qe and the topo-
graphic error Te of FN-SOM are the smallest value in the
three algorithms. Qe of FN-SOM has improved 13.6% from
using the conventional SOM and Te of FN-SOM has also
improved 30.5% from using the conventional SOM. This
is because the result of FN-SOM hardly has inactive neu-
rons between Iris setosa and the other two, therefore, the
more neurons can self-organize the data of Iris versicolor
and Iris virginica. Furthermore, U of FN-SOM is also the
best value. From these results, we can confirm the efficiency
of FN-SOM.

Furthermore, we investigate the cluster structure of the
learned map in order to confirm the clustering ability of FN-
SOM. Figures 6(a) and (b) show distances between adjacent
neurons of the learning results of the conventional SOM and
FN-SOM for Iris data, respectively. This figure thus visual-
izes the cluster structure of the map. Black circles on this
figure mean large distance between neighboring map nodes.
Clusters are typically uniform areas of white circles. We can
see that the boundary lines of FN-SOM are clearer than the
conventional SOM because FN-SOM has few inactive neu-
rons. From these results, we can say that FN-SOM can be
applied to clustering and can obtain more effective cluster-
ing result than SOM.

6. Visualization Method Using False-Neighbor Degrees

FN-SOM learns not only input vectors but also the false-
neighbor degree between the neurons. In order to utilize
the false-neighbor degree effectively, we propose a simple
visualization method using the false-neighbor degrees.

Figure 6(c) shows not only the distances but also the
false-neighbor degrees. The false-neighbor degree reflects
the size of circles. The bigger the false-neighbor degree be-
tween the neurons, the bigger the circle is shown. From
this figure, we can see the boundary line and cluster relation
more clearly.

It is a very simple visualization method using the false-
neighbor degrees. The FN-SOM holds the possibility of re-

alizing a more effective visualization method.

7. Conclusions

In this study, we have proposed a new SOM algorithm, SOM
with False-Neighbor degree between neurons (called FN-
SOM). False-neighbor degrees are allocated between adja-
cent rows and adjacent columns of FN-SOM. The initial
values of all of the false-neighbor degrees are set to zero,
however, they are increased with learning, and the false-
neighbor degrees act as a burden of the distance between
map nodes when the weight vectors of neurons are updated.

We have applied FN-SOM to 2-dimensional data, 3-
dimensional data and Iris data, and we have investigated
the learning behaviors of FN-SOM. Furthermore, the results
were compared with those obtained by the conventional
SOM and Growing Grid. We have confirmed that the quanti-
zation error and the topographic error of FN-SOM were the
smallest value among the three algorithms. Moreover, the
neuron utilization of FN-SOM was the largest value among
the three algorithms. From these results, we have confirmed
the efficiency of FN-SOM.

Besides, in order to confirm the clustering ability of
FN-SOM, we have investigated the cluster structure of the
map by calculating the distances between neurons. As
the results, FN-SOM has obtained more effective clustering
map than SOM, although investigating the clustering ability
quantitatively is our future work.

In addition, in order to utilize the false-neighbor degree
effectively, we have proposed a simple visualization method
using the false-neighbor degrees. We have confirmed the ef-
fectiveness of the proposed method and that FN-SOM holds
the possibility of realizing a more effective visualization
method.

Acknowledgment

This work was supported by Grant-Aid for JSPS Fellows
(19-7384).

References

[1] J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”

MATSUSHITA and NISHIO: SELF-ORGANIZING MAP WITH FALSE-NEIGHBOR DEGREE BETWEEN NEURONS
1469

IEEE Trans. Neural Netw., vol.11, no.3, pp.586–600, 2002.
[2] T. Kohonen, Self-organizing Maps, Berlin, Springer, 1995.
[3] B. Fritzke, “Growing grid — A self-organizing network with constant

neighborhood range and adaptation strength,” Neural Processing Let-
ters, vol.2, no.5, pp.9–13, 1995.

[4] L. Xu, A. Krzyzak, and E. Oja, “Rival penalized competitive learning
for clustering analysis, RBF net, and curve detection,” IEEE Trans.
Neural Netw., vol.4, no.4, pp.636–649, 1993.

[5] Y. Cheung and L. Law, “Rival-model penalized self-organizing map,”
IEEE Trans. Neural Netw., vol.18, no.1, pp.289–295, 2007.

[6] A. Ultsch, “Clustering with SOM: U*C,” Proc. Workshop on Self-
Organizing Maps, pp.75–82, 2005.

[7] K. Kiviluoto, “Topology preservation in self-organizing maps,” Proc.
International Conference on Neural Networks, pp.294–299, 1996.

[8] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz, UCI Repository
of Machine Learning Database, 1998, http://www.ics.uci.edu/˜mlearn/
MLRepository.html

[9] R.A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annual Eugenics, no.7, part II, pp.179–188, 1936.

Haruna Matsushita was born in Toku-
shima, Japan, in 1982. She received the B.E.,
M.E. degrees from Tokushima University, Toku-
shima, Japan, in 2005 and 2007. She is cur-
rently working towards Ph.D. degree at the same
university. Her research interests include theory
and application of Self-Organizing Maps. She is
a student member of the IEEE.

Yoshifumi Nishio received B.E., M.E.,
and Ph.D. degrees in electrical engineering from
Keio University, Yokohama Japan, in 1988,
1990, and 1993, respectively. In 1993, he joined
the Department of Electrical and Electronic En-
gineering at Tokushima University, Tokushima
Japan, where he is currently an Associate Pro-
fessor. From May 2000 he spent a year in the
Laboratory of Nonlinear Systems (LANOS) at
the Swiss Federal Institute of Technology Lau-
sanne (EPFL) as a Visiting Professor. His re-

search interests include analysis and application of chaos in electrical cir-
cuits, analysis of synchronization in coupled oscillatory circuits, develop-
ment of analyzing methods for nonlinear circuits, theory and application
of cellular neural networks, and neural network architecture. He was the
Chair of the IEEE CASS Technical Committee on Nonlinear Circuits and
Systems (NCAS) during 2004–2005, the Steering Committee Secretary
of the IEICE Research Society of Nonlinear Theory and its Applications
(NOLTA) during 2004–2007, and is currently the Secretary/Treasurer of
the IEEE CASS Shikoku Chapter. He is serving as an Associate Editor
for the IEEE CAS Magazine, the IEEE CASS Newsletter, and the RISP
Journal of Signal Processing, and the Editor for the IEICE Fundamentals
Review. He is a senior member of the IEEE and the RISP.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

