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Analysis of Reactance Oscillators Having Multi-Mode Oscillations

Yoshihiro YAMAGAMI†a), Yoshifumi NISHIO†b), Members, and Akio USHIDA††c), Fellow

SUMMARY We consider oscillators consisting of a reactance circuit
and a negative resistor. They may happen to have multi-mode oscillations
around the anti-resonant frequencies of the reactance circuit. This kind
of oscillators can be easily synthesized by setting the resonant and anti-
resonant frequencies of the reactance circuits. However, it is not easy to
analyze the oscillation phenomena, because they have multiple oscillations
whose oscillations depend on the initial guesses. In this paper, we propose a
Spice-oriented solution algorithm combining the harmonic balance method
with Newton homotopy method that can find out the multiple solutions on
the homotopy paths. In our analysis, the determining equations from the
harmonic balance method are given by modified equivalent circuit models
of “DC,” “Cosine” and “Sine” circuits. The modified circuits can be solved
by a simulator STC (solution curve tracing circuit), where the multiple os-
cillations are found by the transient analysis of Spice. Thus, we need not
to derive the troublesome circuit equations, nor the mathematical transfor-
mations to get the determining equations. It makes the solution algorithms
much simpler.
key words: oscillator, multiple oscillations, harmonic balance method,
Newton homotopy method, SPICE

1. Introduction

Analysis of oscillator circuits is very important for design-
ing communication circuits such as modulators and mixers.
Generally, oscillators have both zero amplitude unstable so-
lutions and non-zero amplitude stable and/or unstable orbits.
In the analysis, it is very difficult to find out the multiple
oscillations, because the oscillations depend on the initial
guesses in the transient simulation. Furthermore, the tran-
sient analysis sometimes becomes very time-consuming es-
pecially for high Q oscillators. Nowadays, many kinds of
coupled oscillators have been proposed [1]–[3], which have
many interesting phenomena such as multiple oscillations,
quasi-periodic oscillations, chaos and so on. Thus, in or-
der to analyze these phenomena, it will be useful to develop
simulators to find out the multiple oscillations.

For circuits having a unique non-zero amplitude os-
cillation, there are Newton-like shooting algorithms [4]–[7]
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solving the following relation;

F(v(0), T ) = v(0) − v(T ) = 0, (1)

where v corresponds to the state-variables of the circuit, and
T is the period to be determined. Since the algorithms are
based on the Newton-Raphson method, we need to start
the iterations from a suitable initial guess. The conver-
gence is guaranteed only when the initial guess is located
near the steady-state solution. W. Ma, L.J. Trajkovic and L.
Mayaram [7] have proposed an elegant algorithm combining
a homotopy method with the above shooting method. The
approach has a global convergence property, so that it can be
safely applied to find out the solution satisfying (1). How-
ever, it is still difficult to choose a suitable initial guesses
converging to the multiple oscillations.

In this paper, we propose an elegant Spice-oriented har-
monic balance method for solving multiple oscillations. We
apply it to an oscillator consisting of a reactance circuit cou-
pled with a negative resistor. At first, the circuit is designed
by specifying the resonant and the anti-resonant frequencies
of a reactance circuit such as Cauer or Foster circuit. Af-
ter then, the oscillator is realized by introducing a negative
resistor. We found that the oscillations may happen around
the anti-resonant frequencies [8].

Now, we will outline our solution algorithm as follow:

1. For a given reactance oscillator, the waveform of the
negative resistance is assumed as follows;

v(t) = V0 + V1 cosωt +
M∑

k=2

[V2k−1 cos kωt

+ V2k sin kωt] (2)

Note that we can set V2 sinωt = 0 in (2) because of an
autonomous system [11], and ω is chosen as an addi-
tional variable.

2. The current of negative resistor is given by

i(t) = I0(V) +
M∑

k=1

[I2k−1(V) cos kωt +I2k(V) sin kωt] (3)

where I0(V), I1(V), I2(V), . . . , I2M(V), are functions
of V = (V0,V1,V3, . . . ,V2M)T . Thus, each frequency
component (I2k−1(V), I2k(V)) is described by the non-
linear voltage-controlled current sources in our har-
monic balance method.
For the linear inductances, they are transformed into
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the linear current-controlled voltage sources, and the
linear capacitances into the linear voltage-controlled
current sources. These transformation algorithms using
ABMs (Analog Behavior Models) of Spice are shown
in Sect. 3. This modified equivalent circuit corresponds
to the determining equations of the harmonic balance
method.

3. Introducing the Newton homotopy method, the modi-
fied circuit is solved by a transient analysis of Spice. In
Sect. 2, we propose an solution algorithm to find out the
multiple oscillations which consists of a curve tracing
algorithm based on the arc-length method [9].

Thus, in our method, we need not derive any trouble-
some circuit equations, determining equations of the har-
monic balance method nor the Jacobian matrices to solve the
equations, which makes the solution algorithm much easier.
We will show an interesting illustrative example of a Cauer
oscillator in Sect. 4.

2. Harmonic Balance Method Combining with Newton
Homotopy Method

In order to show the ideas of our solution algorithm, let us
consider a reactance oscillator having a negative resistor as
shown in Fig. 1. Assume that the circuit equation of reac-
tance oscillator is written by

h(v, ẇ,w) = 0, h(., ., .) : R2n+1 �→ R2n+1, (4)

where v is the nonlinear resistor’s voltage, and w ∈ Rn corre-
sponds to the circuit variables of the linear reactance circuit.
Now, let the nonlinear characteristic of the negative resistor
be described in the following form;

i = ĝ(v). (5)

We assume the voltage waveform of v as given in (2). Ap-
plying the harmonic balance method to the circuit equa-
tion (4), and eliminating the variables from w, the determin-
ing equations for the harmonic components can be described
as follows;

f0(V0,V1,V3, · · · ,V2M, ω) = 0 · · · DC
f1(V0,V1,V3, · · · ,V2M, ω) = 0 · · · cosωt
f2(V0,V1,V3, · · · ,V2M, ω) = 0 · · · sinωt
........................................................
f2M−1(V0,V1,V3 · · · ,V2M, ω) = 0 · · · cos Mωt
f2M(V0,V1,V3, , · · · ,V2M, ω) = 0 · · · sin Mωt


, (6)

Fig. 1 Reactance oscillator.

where the fundamental frequency component “ω” should
be determined as an additional variable, and M denotes the
highest frequency component. Thus, the determining equa-
tions are described by a set of algebraic equations, which
consist of (2M + 1)-equations and the same number of vari-
ables. However, it is not easy to solve the equations, because
they may have the multiple solutions.

For simplicity, we set the relations (6) as follow;

f(V) = 0, V ∈ R2M+1, f(.) : R2M+1 �→ R2M+1, (7)

where V = [V0,V1,V3, · · · ,V2M, ω]T . Applying the Newton
homotopy method [9] to solve (7), we have the following
relation;

F(V, ρ) = f(V) + (ρ − 1)f(V0) = 0, (8)

where ρ is an additional variable, and V0 is the initial guess.
Then, the homotopy path† starting from (V0, ρ = 0) satisfies
the relations (6) at ρ = 1. In this way, we can find out
the multiple solutions on the paths, whose curves can be
efficiently traced by the application of the arc-length method
as follows;

F(V, ρ) = 0
2M+1∑
i = 1
i � 2

(
dVi

ds

)2

+

(
dρ
ds

)2

= 1


, (9)

where s denotes the arc-length from a starting point. Equa-
tion (9) is a set of nonlinear algebraic-differential equations,
and their circuit models can be realized by the use of ABMs
(analog behavior models) of Spice [12]. The circuit diagram
is shown in Fig. 2(a) and (b), where “VCCS” is a voltage-
controlled current source. The current sources f̂i(V, ρ) and
Is, Iρ in Fig. 2 are given by††

Fig. 2 Circuit diagram of the Newton homotopy method.

†The solution curve satisfies the relation (8).
††Spice [10] has many useful analog behavior models, so we can

easily realize the current sources f̂i(V, ρ). In this circuit, V2 = 0 is
realized by setting K = ∞.
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f̂i(V, ρ) = Fi(V, ρ) − Vi, i = 1, 2, . . . , 2M + 1,
for V2 = 0

Is =

2M+1∑
i = 1
i � 2

(
dVi

ds

)2

, Iρ =

(
dρ
ds

)2

.


(10)

The second term of (10) is realized by STC (Solution Curve
Tracing Circuit) as shown in Fig. 2(b), where RD is a suffi-
ciently large dummy resistance to avoid the L-J cut set. Fur-
thermore, f1(V0), f2(V0), . . . , f2M+1(V0) in Fig. 2(a) denote
the initial guesses. Thus, we can easily trace the homotopy
path starting from an arbitrarily chosen initial guess (V0).
The circuit shown in Fig. 2 is solved by transient analysis of
Spice, and the multiple oscillations are found at ρ = 1 on
the homotopy paths.

3. Equivalent Circuit Models

3.1 Fourier Transfer Circuit Model

Oscillator circuits usually consist of many linear and/or non-
linear reactive and resistive elements. When the harmonic
balance method is applied to the analysis, the determining
equations are described by a set of algebraic equations as
shown in Sect. 2. Firstly, we need to expand the responses
of nonlinear elements into the Fourier series. Let us assume
the input and output waveforms as follows;

v(t) = V0 +

M∑
k=1

[V2k−1 cos kωt + V2k sin kωt]

i(t) = I0 +

M∑
k=1

[I2k−1 cos kωt + I2k sin kωt]


(11)

where M denotes the highest harmonic component to take
account in the analysis. The output Fourier coefficients are
described as follows;

I0 = g0(V0,V1, · · · ,V2M)
I1 = g1(V0,V1, · · · ,V2M)
...............................

I2M = g2M(V0,V1, · · · ,V2M)


(12)

In this case, these coefficients can be given by explicit forms
only if the nonlinear characteristics are described by power
series. For general nonlinear elements, we need to introduce
some other techniques for the Fourier transformation. When
the input-output relation is given by

i = g(v), (13)

the Fourier coefficients are calculated by the following for-
mulas;

I0 =
1
T

∫ T

0
g(v)dt

I2k−1 =
2
T

∫ T

0
g(v) cos kωtdt, I2k =

2
T

∫ T

0
g(v) sin kωtdt

k = 1, 2, . . . ,M


.

(14)

Fig. 3 Fourier transfer circuit model.

Now, let us apply the trapezoidal integration formula to (14)
given as follow;

∫ b

a
g(v)dt =

h
2

(g0 + gn) + h(g1 + g2 + · · · + gn−1),

(15)

where the step-size of the integration is h = (a−b)/n for “n”
divisions. Then, the truncation error is given by g(2)h2/12n.
Using this formula, we can realize the equivalent circuit
model satisfying (15) with the ABMs of Spice. To under-
stand the circuit model, we assume that the input is given
by (11) with θ = ωt. Then, the Fourier transfer circuit
model for calculating the Nth higher harmonic component
is shown by Fig. 3. 2K + 1 blocks calculate the Nth compo-
nents (I2N−1, I2N) in (14). On the other hand, the integration
interval [0, 2π] for θ = ωt is divided by 2K sections us-
ing the resistors, so that the kth input voltage of the ABM
blocks is given by kth term in (15) with ωt(= θk = 2πk/2K)
at the kth node, and the values (14) are calculated by the use
of ABMs of Spice. Thus, the resultant outputs are given
by {g(V, θk) cos Nθk, g(V, θk) sin Nθk, k = 0, 1, 2, . . . , 2K}.
Summing all of them and dividing by 2K, the outputs are
equal to the coefficients of cos Nθ and sin Nθ, respectively.

To investigate the numerical accuracy, we first calculate
a modified Bessel function as follows;

IN(x) =
1

2π

∫ π

−π
ex cos θ cos Nθdθ. (16)

The simulation results with h = 2π/20 are shown in Fig. 4.
The value I1(10) = 2761 for N = 1, x = 10 is exactly equal
to the result from the Table of Bessel function [13]. Remark
that Fourier expansions for exponential functions are very
important to the analysis of the circuit containing diodes and
bipolar transistors [12]. Next, we apply the transfer circuit
to the Fourier expansion of MOSFET, whose characteristic
in Spice model is described by a piecewise continuous func-
tions [12] as follows:

1. Linear region: (VGS > VT , VGS − VT ≥ VDS > 0)
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Fig. 4 Fourier transformation for modified Bessel function.

Fig. 5 Fourier transformation for MOSFET. VDS = 3 [V], K =

3.87 [µA], λ = 0.01605, W = 2 [µm], L = 2 [µ], VT = 0.827 [V].

ID =
KW

L

[
(VGS − VT ) − VDS

2

]
VDS

(1 + λVDS ). (17a)

2. Saturation region: (VGS > VT , VDS > VGS − VT )

ID =
KW

L
(VGS − VT )2(1 + λVDS ). (17b)

The result of Fourier expansion for an input VGS cosωt is
shown in Fig. 5. Thus, the Fourier transfer circuit model
given by Fig. 3 can be efficiently applied to any kind of cir-
cuit elements contained in analog ICs.

3.2 Fourier Expansion of Linear and Nonlinear Inductors

Let an inductor flux be the current-controlled as follow;

φL(t) = φ̂(iL) (18)

If the characteristic is described by a power series, the
Fourier coefficients will be described in explicit forms. Oth-
erwise, we need to use the Fourier transfer circuit model
given in Fig. 3. Thus, the Fourier expansion is described in
the following form;

Fig. 6 Equivalent “Cosine” and “Sine” circuits.

φL(t)=ΦL,0+

M∑
k=1

[
ΦL,2k−1 cos kωt+ΦL,2k sin kωt

]
. (19a)

Differentiating φL(t), we have

vL(t)=
M∑

k=1

kω
[−ΦL,2k−1 sin kωt + ΦL,2k cos kωt

]
. (19b)

Thus, “Sine” and “Cosine” components for the kth higher
harmonic components are respectively given by

VL,2k = −kωΦL,2k−1, VL,2k−1 = kωΦL,2k,
k = 1, 2, . . . ,K,

(20a)

Thus, the inductor is replaced by the coupled current-
controlled voltage sources as shown in Fig. 6.
For a linear inductor, we have

vL = L
di
dt

⇒ VL,2k = −kωLIL,2k−1, VL,2k−1 = kωLIL,2k (20b)

3.3 Fourier Expansion of Linear and Nonlinear Capacitors

Let a capacitor charge be the voltage-controlled characteris-
tic as follow;

qC(t) = q̂C(vC) (21)

The Fourier expansion can be carried out with the same
technique as the inductor.

qC(t) = QC,0 +

M∑
k=1

[QC,2k−1 cos kωt + QC,2k sin kωt], (22a)

Differentiating qC(t), we have
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iC(t) =
M∑

k=1

kω[−QC,2k−1 sin kωt + QC,2k cos kωt], (22b)

Thus, “Sine” and “Cosine” components for the kth high har-
monic component are respectively given by

IC,2k = −kωQC,2k−1, IC,2k−1 = kωQC,2k,
k = 1, 2, . . . ,K,

(23a)

For a linear capacitor, we have

iC = C
dv
dt
⇒ IC,2k = −kωCVC,2k−1,

IC,2k−1 = kωCVC,2k (23b)

Thus, each capacitor is replaced by the coupled voltage-
controlled current sources as shown in Fig. 6.

3.4 Equivalent Circuit Model of the Determining Equa-
tions

All the reactance elements in the linear reactance circuit and
nonlinear resistors can be replaced by the equivalent circuit
models in the table of Fig. 6. Thus, the reactance oscillator
shown in Fig. 1 is transformed into the “Cosine” and “Sine”
circuits as shown in Fig. 7, where we assume the voltage and
current of nonlinear resistor as follows;

v(t) = V0 +

M∑
k=0

[V2k−1 cos kωt + V2k sin kωt] (24a)

i(t) = I0 +

M∑
k=0

[I2k−1 cos kωt + I2k sin kωt] (24b)

For the analysis of autonomous systems, the time origin can
be arbitrarily chosen satisfying a relation “V2 sinωt = 0.”
The equivalent circuit model is shown by Fig. 7(a); namely,

V2 − ω = −ω (25)

Fig. 7 Equivalent “Cosine” and “Sine” circuit models of the determining
equations. k = 1, 2, 3, . . . ,M.

which means V2 = 0. Although the equivalent circuit in
Fig. 7 is composed of 2M + 2 sub-circuits, one of them
corresponds to the V2 sinωt = 0 or V2 = 0. Therefore,
the solution of the circuit decides the 2M + 1 variables
{ω,V0,V1,V3, . . . ,V2M−1,V2M}. The modified circuit shown
in Fig. 7 can be efficiently solved by the Newton homotopy
method shown in Sect. 2 and STC (Solution curve Tracing
Circuit).

4. An Illustrative Example

Consider a reactance Cauer oscillator having a negative re-
sistor as shown in Fig. 8, whose nonlinear characteristic is
given by

iG = −C1vG + C3v
3
G, C1 = 1. C3 = 1. (26)

Assume the resonant and ant-resonant frequencies as fol-
lows;

Anti-resonant frequencies : ω10 = 1, ω30 = 4, ω50 = 6
Resonant frequencies : ω20 = 2, ω40 = 5

(27)

Then, we have the circuit parameters as shown in
Fig. 8, where we have added a small resistor (r = 0.05) to
each inductor.

It is well-known from the experimental results [6],
[14], [15] that, when a weakly nonlinear resistor (26) has
a symmetric characteristic to the origin, the resultant wave-
forms will have only odd number of the higher harmonic
components. Thus, we can set

vG(t) = V1,1C cosωt +
M∑

k=1

[V2k+1,1C cos(2k + 1)ωt

+ V2k+1,1S sin(2k + 1)ωt], (28)

where the term V1,1S sinωt in (28) was deleted because of
the autonomous system.

Now, we will develop “Cosine” and “Sine” circuits to
Fig. 8 which correspond to the determining equations of the
harmonic balance method.

In this case, for linear inductors, we have

VL,2k = −kωLIL,2k−1, VL,2k−1 = kωLIL,2k,
k = 1, 2, . . . ,M.

(29)

For linear capacitors, we have

Fig. 8 Cauer oscillator. C1 = 0.1, C2 = 0.343, C3 = 0.439, L1 = 0.417,
L2 = 0.262, L3 = 1.058, r1 = · · · = r3 = 0.01.
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Fig. 9 Equivalent circuit describing the determining equations.

IC,2k = −kωCVC,2k−1, IC,2k−1 = kωCVC,2k,
k = 1, 2, . . . ,M.

(30)

Thus, the inductors and capacitors in the modified “Cosine”
and “Sine” circuits are replaced by the simple coupled lin-
ear current-controlled voltage sources, and coupled voltage-
controlled current sources, respectively. Whole the circuit
configuration until the 3rd higher harmonic components is
shown in Fig. 9. In order to trace the multiple solutions, it
also contains the Newton homotopy sub-circuits denoted by
{(ρ− 1) fi(V0), i = 1, 2} in the first two sub-circuits. Observe
that each of the “Cosine” and “Sine” circuits has the same
topology as the original circuit shown in Fig. 8. It makes
easier to construct the equivalent circuits with the schematic
editor of Spice.

Combining STC (solution curve tracing circuit) shown
in Fig. 2(b) with Fig. 9, we can trace the homotopy paths
starting from { fi(V0), i = 1, 2}, and the multiple solutions
are found at ρ = 1. We have traced both sides of the paths
by setting the initial conditions ρ̇(0) > 0, and < 0 of STC.
The results are shown in Fig. 10(a) for s < 0 and (b) for
s > 0, where the solid line corresponds to ω-curve. Thus,
we have found 6 solutions at ρ = 1 as follows:

Stable solutions : ω1 = 1.0878, ω3 = 3.6770, ω5 = 5.722
Unstable solutions : ω0 = 0, ω2 = 2.0001, ω4 = 4.999

Observe that the amplitudes of oscillations at resonant
frequencies ω = 0, 2, 5 are all the zeros. It means that the

Fig. 10 Solution curves, (a) s < 0, (b) s > 0.

reactance oscillator does not oscillate at the resonant fre-
quencies of the reactance circuit [8], and the non-zero os-
cillations will happen around the anti-resonant frequencies.
We found from Fig. 10 that the oscillator has totally 6 so-
lutions, and that those around the anti-resonant frequencies
are stable† Next, we have calculated the steady-state wave-
forms starting from the initial conditions estimated by the
above harmonic balance methods. The results are shown in
Figs. 11(a), (b) and (c). The frequency spectra with FFT are
shown in Figs. 12(a), (b) and (c), respectively. The wave-
forms at ω = 1.0556 is largely distorted and contains many
higher harmonic components.

We have confirmed from the results that, although
the Cauer oscillator happens to oscillate around the anti-
resonant frequencies of the reactance circuit, their frequen-

†Although we can arbitrarily choose the initial guesses, it may
happen to trace all the solutions or some of them depending on the
guesses. In this example, when we have traced both directions of
solution curves of s > 0, s < 0 with ω0 = 6, most of our cases
found all of the solutions on the homotopy paths. It is known that
the curve tracing algorithm [9] is failed at the point of rank(F(V)) <
n for an n + 1 variables. However, it is impossible to know the
geometries of curves in n+1-dimensional space. Hence, to find all
the solutions, we will recommend to choose many initial guesses
in the space around the expected solutions.
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Fig. 11 The steady-state waveforms. (a) ω1 = 1.0556, (b) ω3 = 3.619,
(c) ω5 = 5.68.

cies are little different from the designed frequencies be-
cause of the nonlinearity of the resistor.

5. Conclusions and Remarks

It is a difficult task to analyze oscillators having multi-mode
oscillations, because each of the oscillations depends on the
corresponding initial condition. In this paper, we have pro-
posed a Spice-oriented harmonic balance method, where the
determining equations can be described by the equivalent
“DC,” “Cosine” and “Sine” circuits. The modified circuits
are solved by the Newton homotopy method using Spice.
Thus, in our algorithm, we need not to derive any trouble-
some circuit equations, determining equations nor the Jaco-

Fig. 12 Frequency spectrum for Fig. 11. (a) ω1 = 1.0556, (b) ω3 =

3.6191, (c) ω5 = 5.68.

bian matrices. As an example, we considered a Cauer os-
cillator having multi-mode oscillations which is composed
of a reactance Cauer circuit and a negative resistor. We
found from the results that the oscillations happen to appear
around the ant-resonant frequencies of the reactance circuit.
The solution algorithm shown in this paper will be applied
to any kind of reactance oscillators.

The Cauer oscillators sometimes happen quasi-
periodic oscillations depending on the circuit parameters.
We will also apply our algorithm to electronic circuits such
as Hartley and Colpitis oscillators. These are the future
problems.
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