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SUMMARY

High-speed digital LSI chips usually consist of many sub-circuits coupled with multi-conductor inter-
connects embedded in the substrate. They sometimes cause serious problems of the fault switching
operations due to the time-delays, crosstalks, re�ections, etc. In order to solve these problems, it is very
important to develop a user-friendly simulator for the analysis of LSIs coupled with interconnects. In
this paper, we consider a large-scale gate-array circuit coupled with multi-conductor RCG interconnects.
At �rst, we propose a new method for calculating the dominant poles of the impedance matrix, which
give the large e�ects to the transient response. The corresponding residues are estimated by the least
squares method. Using these poles and residues, the input–output relation of each interconnect can be
described by the partial fractions. After then, the interconnect is replaced by the equivalent circuit re-
alizing the partial fractions. In this way, we can easily develop a user-friendly simulator familiar with
SPICE. We found from many examples that the good results can be obtained using only few dominant
poles around the origin. Furthermore, the reduction ratio of our method is very large especially for
large scale interconnects. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: IC interconnects; exact poles and residues; reduction algorithm; complex frequency
domain; SPICE simulator; asymptotic equivalent circuit; passivity

1. INTRODUCTION

The analysis and design of high-speed LSI chips are becoming more and more important,
because the LSI chips coupled with interconnects embedded in the substrate sometimes cause
the fault switching operations due to the signal delays, crosstalks, re�ections, etc [1–9]. The
Elmore resistance–capacitance (RC) delay metric is popular due to its simple closed-form
expression, computation speed and �delity with respect to the simulation [4]. The closed-form
combining the delay and crosstalk is �rstly shown in Reference [5]. The improved techniques
[6–9] are proposed later for improving the accuracy and the practical applications in the
simulations.
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On the other hand, there have been published many papers concerning to the analysis of
transient responses of lossy interconnects coupled with non-linear terminations. Their analytical
methods are roughly classi�ed into 3 groups. The �rst is the method of characteristics as
shown in Reference [10] which is based on the re�ection mechanism proposed by Branin
[11]. The second is the scattering matrix method as shown in Reference [12, 36], etc. The
third uses the method of inverse Laplace transform as shown in References [13–17]. They
are usefully applied to the linear systems. The responses with non-linear terminations are
calculated by the combination of the recursive convolution methods [14, 18, 19].
Nowadays, asymptotic waveform evaluation (AWE) [20] is widely used as a reduction

technique of large-scale networks coupled with interconnects, whose algorithm is based on
the moment-matching method and the Pad�e approximation [21, 22]. Unfortunately, one of
the serious problems of the AWE is that the poles far from the origin sometimes become
erroneous, because the admittance or impedance matrix in the AWE is �rstly described by
the power series of the complex frequency s using the Maclaurin expansion [20], and after
then, it is transformed into the corresponding rational function by the application of the Pad�e
approximation.
To overcome the problem, Nakhla et al. have proposed complex frequency hopping (CFH)

[23] for calculating the exact poles. The algorithm can �nd out the exact poles by properly
hopping the origin of Taylor expansion on the complex axis. The other is based on a multi-
point Pad�e approximation [24]. Both of them need properly to choose some points in the
complex frequency domain to obtain the exact Taylor series. Thus, it can �nd the good
Pad�e approximation. We have also proposed an elegant method in Reference [25]. In these
reduction algorithms, the reduced circuits sometimes become unstable in the time domain
even if all the poles are located in the left-hand side of the complex plane. The ill-condition
can be overcome by Pad�e via a Lanczos (PVL) process [26]. The passive reduced-order
interconnect macromodelling algorithm (PRIMA) [2, 27] is an extension of the block Arnoldi
technique to include the guaranteed passivity. In order to apply this algorithm to the circuits
with interconnects, we need two steps such that each interconnect is modelled by a �nite-
order system, and Arnoldi-based congruence transform is applied to the system to form its
reduced-order model [28].
On the other hand, it is said that a circuit is de�ned as passive if it satis�es the law of

conservation of energy. Depending on the de�nition, it is of general perception that if the
frequency response of the reduced-model is matched with the original response up to the
highest frequency of interest, the passivity can be preserved [29]. Another e�cient passive
reduction algorithm satisfying the above passivity condition is given in Reference [30].
In this paper, we consider LSIs such that large-scale gate-array circuits are coupled with

interconnects embedded in the substrate. In this case, the capacitance component of the in-
terconnect is dominant compared to the inductance, and the di�usion resistance is very large
compared to those of PCBs [3], so that we can assume them as RCG interconnects instead
of RLCG. We �rst derive the impedance matrix at the near and far end of the interconnect
[1]. All the poles of the impedance matrix are located on the negative real axis in the com-
plex plane, and they will be easily calculated by a commercial software. Using the poles,
we approximately describe each element of the matrix in a form of partial fraction, where
the residues are calculated by the least squares method in such a manner that the response
curves coincide with those from the impedance matrix in the complex frequency domain of
interest. We found from the simulation results that the impedance matrix can be approximately
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described by the partial fractions with few dominant poles located near the origin. Therefore,
our reduction rate will be very large especially for large-scale interconnects. Since each ele-
ment of the impedance matrix can be approximately described by a series of partial fractions,
it is easily realized by the asymptotic equivalent circuit satisfying the partial fractions. Thus,
we can easily develop SPICE oriented simulators of LSIs coupled with RCG interconnects. In
Section 2, we show how to calculate the exact poles and residues. In Section 3, it is shown
that the impedance matrix of interconnect can be well approximated with few dominant terms
of the partial fractions. Thus, we can realize the simple asymptotic equivalent circuit familiar
with SPICE. We can also show that the circuit is always passive. In Section 4, our reduction
algorithm is shown using an example of the large-scale RCG interconnects. We found from
the results that the reduction rate of our method is very large. In Section 5, some interesting
examples are shown with our SPICE-oriented simulators. We found from the examples that
our asymptotic equivalent method for the interconnects can get the good results even for the
lower order approximation.

2. CALCULATION OF THE EXACT POLES AND RESIDUES OF INTERCONNECTS

Now, consider a uniform N coupled RCG interconnect. Let us assume the telegraph equation
can be described by

dV(x; s)
dx

= −RI(x; s); dI(x; s)
dx

= − (G+ sC)V(x; s) (1)

in the complex frequency domain, where R;C and G are positive de�nite symmetric matrices.
Let us introduce matrices Pv(s) and Pc(s) to transform the circuit equations into the diagonal

forms, which satisfy

diag[�i(s)2] = Pv(s)−1R(G+ sC)Pv(s)

diag[�i(s)2] = Pc(s)−1(G+ sC)RPc(s)
(2)

Then, the input and output relations at the near and far ends are described by the impedance
matrix as follows [1, 31]:

[
V(0; s)

V(d; s)

]
=

[
Z11(s) Z12(s)

Z21(s) Z22(s)

] [
I(0; s)

−I(d; s)

]
(3)

where

Z11(s) = Z22(s)=Pv(s)diag[coth �i(s)d]Pc(s)−1

Z12(s) = Z21(s)=Pv(s)diag[sinh �i(s)d]−1Pc(s)−1
(4)

Observe that all the poles of the impedance matrix are found at the locations satisfying
sinh �i(s)d=0. Thus, we have the following theorem for the calculation of the poles.
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Theorem 1
The locations of the poles satisfying relations (3) are found by solving the following equations
[25]: ∣∣∣∣R(G+ sC) + (n�

d

)2
I
∣∣∣∣ =0; n=1; 2; : : : (5)

where d is the length of the interconnect. For n=0, we have |G+ sC|=0.
It can be also proved [32] that if R;C and G are positive de�nite symmetric matrices,

then, all the poles of RCG interconnect are located in the negative real axis. Thus, the poles
satisfying (5) can be obtained by solving the following relation:

|sI −A|=0 for A= − (RC)−1
((n�

d

)2
I+RG

)
(6)

where we can e�ciently use a commercial software (for example Reference [33]) to calculate
the eigenvalues of A.
To describe the impedance matrix (3) with partial fractions, we need to calculate the

residues corresponding to the above poles.

Theorem 2
For the case of n �= 0 in (5), the residues of Z12(s) and Z21(s) in (4) at the pole pi are
given by

k12; i=k21; i=Pv(s)diag
· · · i · · ·[
0 · · ·

(
1

cosh(�i(s)d)(@�i(s)=@s)d

)
· · · 0

]
Pc(s)−1

∣∣∣∣∣∣
s=pi

(7)

where @�i(s)=@s is obtained as follows [20]:

@Ui
@s
@�i(s)
@s


 =

[
R(G+ sC)− �i(s)2I −2�i(s)Ui

UTi 0

]−1 [ −RCUi
0

]
(8)

where Ui is an eigenvector for �i(s) given in Equation (2).

Corollary 2.1
The residues of Z11(s) and Z22(s) in Equation (4) are given by

k12; i=k21; i=Pv(s)diag
· · · i · · ·[
0 · · ·

(
1

(@�i(s)=@s)d

)
· · · 0

]
Pc(s)−1

∣∣∣∣∣∣
s=pi

(9)

Observe that the residues given by Equations (7) and (9) are the same except for the signs,
because the denominator of (7) has the factor cosh(�i(s)d) which takes the value ‘1’ or ‘−1’
depending on �i(s)d|s=pi = jn�; i=1; 2; : : : ; N; n=1; 2; : : : .
Now, let us calculate the poles p0i and the residues k011; i=k022; i ; k012; i=k021; i at n=0.
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Corollary 2.2
Since the poles s=p0i at n=0 correspond to �i → 0, we have the following relation:

lim
�(s)→0

Pv(s)diag[sinh �i(s)d]−1Pc(s)−1 = (G+ sC)−1=d (10)

It can be transformed into the diagonal form [32]. Furthermore, we can show from Equation
(10) that k012; i=k021; i are equal to k011; i=k022; i.
Thus, the impedance matrix given by Equation (4) is described by the partial fractions with

the poles and the corresponding residues in the following form:

Z11; ij(s) = Z22; ij(s)=
k0; ij
s− p0 +

k1; ij
s− p1 +

k2; ij
s− p2 +

k3; ij
s− p3 + · · · (11)

Z12; ij(s) = Z21; ij(s)=
k0; ij
s− p0 − k1; ij

s− p1 +
k2; ij
s− p2 − k3; ij

s− p3 + · · · (12)

It is very important to estimate the number of terms in Equations (11) and (12) which
should be chosen to approximate the impedance matrix given by Equation (4). We consider
here the special case of single line interconnect, where the input and output of an interconnect
are described by the impedance matrix as follows:

[
V (0; s)

V (d; s)

]
= Z0(s)

[
coth �(s)d (sinh �(s)d)−1

(sinh �(s)d)−1 coth �(s)d

] [
I(0; s)

−I(d; s)

]
(13)

Z0(s) =
√
R=(G + sC); �(s)=

√
R(G + sC) (14)

We assumed the parameters as follows: R=5 �=�m; C=6:28 fF=�m; G=10 mS=�m,
d=5 �m.
The frequency responses of Z11(s)=Z22(s) and Z12(s)=Z21(s) for the 20th order approxi-

mation‡ are shown in Figure 1(a) and 1(b), respectively. We found from the example that
both frequency response curves are good agreement on the whole frequency-domain. Thus,
we can expect to have the good result of the transient response with the asymptotic equivalent
circuit realized by relation (11) and (12), whose algorithm is shown in the next section.§

3. ASYMPTOTIC EQUIVALENT CIRCUIT AND ITS PASSIVITY

Now, consider the equivalent circuit for realizing the impedance matrix given by Equation (4).
We have already shown in Section 2 that all the poles are located on the negative real axis.
Furthermore, only the poles located near the origin will give large e�ect to the transient
response. Therefore, we need to choose the few dominant poles around the origin. For sim-
plicity, we consider the asymptotic equivalent circuit for the single line interconnect given

‡The nth order approximation means that we take �rst n terms of Equations (11) and (12).
§You can see the same result in Reference [25] for RLCG interconnect.
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Figure 1. Approximation of partial fraction (Order =20).

by Equations (13) and (14). Of course, the method can be easily extended to an N -coupled
interconnect. We have from Equations (11) and (12) the following relations:

Z11(s) = Z22(s)=
k0

s− p0 +
M∑
i=1

[
k2i−1

s− p2i−1 +
k2i

s− p2i

]
(15)

Z12(s) = Z21(s)=
k0

s− p0 +
M∑
i=1

[
− k2i−1
s− p2i−1 +

k2i
s− p2i

]
(16)

where M is the number of dominant terms. Equations (15) and (16) consist of the same terms
with the di�erent signs. Therefore, let us set them as follows:

Z1(s)=
M∑
i=0

k2i
s− p2i ; Z2(s)=

M∑
i=1

k2i−1
s− p2i−1 (17)

where the poles and the residues are calculated from Equations (5), (7), (9) and (10) as
follows:

p0 =−G
C
; pi= − RG + (i�=d)2

RC
; i=1; 2; : : : ; 2M (18)

k0 =
1
Cd
; ki=

2
Cd
; i=1; 2; : : : ; 2M (19)

Then, Equations (13) and (14) can be approximately written in the following form:

[
V (0; s)

V (d; s)

]
=

[
Z1(s) + Z2(s) Z1(s)− Z2(s)
Z1(s)− Z2(s) Z1(s) + Z2(s)

] [
I(0; s)

−I(d; s)

]
(20)
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Figure 2. Asymptotic equivalent circuit.

The impedance matrix (20) contains the terms −Z2(s)I(d; s) and Z2(s)I(0; s), which can be
synthesized by the use of the current-controlled voltage sources

Vd(s)= − Z2(s)I(d; s); Vs(s)=Z2(s)I(0; s) (21)

as shown in Figure 2(a). The controlled voltage sources play the important role of the re�ec-
tions from both ends. We can also realize (20) by a lattice circuit as shown in Figure 2(b).
The impedances Z1 and Z2 in Figure 2(a) and (b) are synthesized by the series connection
of R–C circuits as shown in Figure 2(c) and (d), where

Ci=
1
ki
; Ri= − ki

pi
; for pi ¡ 0 i=0; 1; 2; : : : ; 2M (22)

Observe that these asymptotic equivalent circuits are very simple and familiar with SPICE.
Thus, we can easily develop the user-friendly simulator. The equivalent circuits for the multi-
conductor interconnects can be realized in the same way as shown in the next section.
Remark that the asymptotic equivalent circuit is realized in two di�erent ways as shown in

Figure 2(a) and 2(b). Since all the resistive and capacitive elements in Z1 and Z2 are always
positive as shown by Equation (22), the circuit (b) is passive because it does not contain any
controlled source. Thus, the circuit (a) is also passive because they are equivalent in each
other. Although both circuits will have the same v–i characteristics, the applications of the
latter may be somewhat limited because the lower terminals are connected through 2Z2. See
References [25, 34] for the other circuit structures of RLCG interconnects.

4. LARGE-SCALE RCG INTERCONNECTS

Let us consider the reduction algorithm of large-scale RCG interconnects and the asymptotic
equivalent circuit models. To understand our algorithm, we consider an example of N coupled
interconnect whose parameters [35] are given as follows:

[Ri; i=5 �=�m; i=1; 2; : : : ; N; Other elements of R are zeros] (23)
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Table I. Poles for N =1 (|pmax|¡400).
No. n=0 n=1 n=2 n=3 n=4 n=5

1 −1:5924 −14:165 −51:883 −114:75 −202:76 −315:92

Table II. Poles for N =2 (|pmax|¡400).
No. n=0 n=1 n=2 n=3 n=4 n=5

1 −1:5544 −13:288 −48:276 −106:59 −188:23 −293:21
2 −1:6248 −15:191 −56:101 −124:28 −219:72 −342:48

Table III. Poles for N =10 (|pmax|¡400).
No. n=0 n=1 n=2 n=3 n=4 n=5

1 −1:4957 −12:652 −45:693 −100:76 −177:86 −276:98
2 −1:5151 −12:795 −46:269 −102:06 −180:16 −280:58
3 −1:5419 −13:038 −47:264 −104:26 −184:08 −286:71
4 −1:5702 −13:381 −48:643 −107:41 −189:69 −295:48
5 −1:5953 −13:825 −50:456 −111:51 −196:98 −306:88
6 −1:6146 −14:356 −52:640 −116:45 −205:77 −320:62
7 −1:6275 −14:946 −55:073 −121:95 −215:58 −335:96
8 −1:6347 −15:540 −57:537 −127:53 −225:52 −352:72
9 −1:6379 −16:063 −59:707 −132:45 −234:28 −362:01
10 −1:6387 −16:426 −61:217 −135:87 −240:03 −374:76



Gi; i=10 mS=�m; Gi; i−1 =Gi; i+1 = − 1 mS=�m;
Gi; i−2 =Gi; i+2 = − 0:1 mS=�m
i=1; 2; : : : ; N; Other elements of G are zeros


 (24)



Ci; i=6:28 fF=�m; Ci; i−1 =Ci; i+1 = − 0:49 fF=�m;
Ci; i−2 =Ci; i+2 = − 0:03 fF=�m
i=1; 2; : : : ; N; Other elements of C are zeros


 (25)

and assume the length d=5 �m. Using relation (5), we found the poles as shown in Tables
I–III where the poles less than −400 are neglected, because they will give only small e�ect
to the transient response, where N =1; 2; 10 means a single line, 2-coupled and 10-coupled
interconnects, respectively. It is remarkable that the number of poles for N -coupled intercon-
nect is given by N × (M +1) if we take into account until n=0; 1; : : : ; M in Equation (5) for
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Figure 3. Least squares method with 6 poles: (a) Z11; 11; (b) Z12; 11.

the pole calculation. Thus, the number of poles rapidly increases with M and N , which causes
the asymptotic equivalent circuit to complicate, especially for the large-scale interconnects.
We found from the tables that the poles for N =1 are always located around the central

position for every nth pole groups; i.e. they are located between No.1 and No.2 for N =2,
and between No.5 and No.6 for N =10 as shown in Tables II and III. Hence, in our reduction
algorithm, we shall use the 6 poles for N =1 given in Table I, as the dominant poles for all
the cases of N even if N =100; 1000 or more.
In this case, each matrix element given by Equation (4) can be described by the 6 terms

in the following form:

Zkl; ij =
k1; kl; ij

s+ 1:5924
+

k2; kl; ij
s+ 14:165

+
k3; kl; ij

s+ 51:883
+

k4; kl; ij
s+ 114:75

+
k5; kl; ij

s+ 202:76
+

k6; kl; ij
s+ 315:92

k; l=1; 2; i; j=1; 2; : : : ; N (26)

Note that we cannot any more apply the methods given by Theorem 2 and Corollary 2.1 to
estimate the residues k1; kl; ij ; : : : ; k6; kl; ij.
Therefore, we propose here to apply the least squares method to estimate the approximate

residues, in such a manner that the deviations between the frequency response curves from the
impedance matrix given by Equation (4) and those from Equation (26) become the smallest
in all the frequency domain of interest.¶ The frequency response curves using the 6 poles are
shown in Figure 3(a) and 3(b). We also found from the numerical results that the residues far
from the diagonal elements in Zij ; i; j=1; 2 become smaller and smaller. Thus, it is enough
to choose at most seven elements including the diagonal element in each row. Hence, each

¶In this calculation, we e�ciently used a widely distributed computer software Lapack [33].
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sub-matrix in Equation (4) can be written as follows:

Zij(s) �




Zij;11 Zij;12 Zij;13 Zij;14 0 0 0 0 0 0 0

Zij;21 Zij;22 Zij;23 Zij;24 Zij;25 0 0 0 0 0 0

Zij;31 Zij;32 Zij;33 Zij;34 Zij;35 Zij;36 0 0 0 0 0

Zij;41 Zij;42 Zij;43 Zij;44 Zij;45 Zij;46 Zij;47 0 0 0 0

0 Zij;52 Zij;53 Zij;54 Zij;55 Zij;56 Zij;57 Zij;58 0 0 0

0 0 Zij;63 Zij;64 Zij;65 Zij;66 Zij;67 Zij;68 Zij;69 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 0 Zij;NN−3 Zij;NN−2 Zij;NN−1 Zij;NN




(27)

for i; j=1; 2. We also found from the results that the diagonal terms in Z11(s)=Z22(s) and
Z12(s)=Z21(s) are most dominant. Furthermore, we have the following relations:[

Zij;11 ≈ · · · ≈ Zij;NN ; for diagonal elements
Zij; kk+1 ≈ Zij; kk−1; Zij; kk+2 ≈ Zij; kk−2; Zij; kk+3 ≈ Zij; kk−3; for nonzero kth terms

]
(28)

Using relations (3) and (28), the terminal voltages at the near and far ends can be written as
follows:

Vk(0; s)≈ Z11; kk Ik(0; s) + Z11; kk+1(Ik−1(0; s) + Ik+1(0; s))
+Z11; kk+2(Ik−2(0; s) + Ik+2(0; s)) + Z11; kk+3(Ik−3(0; s) + Ik+3(0; s))

+Z12; kk Ik(d; s) + Z12; kk+1(Ik−1(d; s) + Ik+1(d; s))

+Z12; kk+2(Ik−2(d; s) + Ik+2(d; s)) + Z12; kk+3(Ik−3(d; s) + Ik+3(d; s)) (29)

Vk(d; s)≈ Z12; kk Ik(0; s) + Z12; kk+1(Ik−1(0; s) + Ik+1(0; s))
+Z12; kk+2(Ik−2(0; s) + Ik+2(0; s)) + Z12; kk+3(Ik−3(0; s) + Ik+3(0; s))

+Z11; kk Ik(d; s) + Z11; kk+1(Ik−1(d; s) + Ik+1(d; s))

+Z11; kk+2(Ik−2(d; s) + Ik+2(d; s)) + Z11; kk+3(Ik−3(d; s) + Ik+3(d; s))

k=1; 2; : : : ; N (30)

Z11; kk in the �rst term of Equation (29) and the �fth term of Equation (30) correspond to the
self-impedances Z11; Z22; : : : ; ZNN as shown in Figures 4(b) and 5(b). Other terms consist of
the current-controlled voltage sources as shown Figure 5(a).
We found from the example that the reduction rate is very large, because the impedance

matrix can be approximated with few dominant elements around the diagonals as shown in
Equation (27). If the coupling coe�cients between the multi-conductors ((23)–(25)) become
stronger, we may take into account some more o�-diagonal elements of Zij(s); i; j=1; 2.
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Figure 4. (a) Multi-conductor interconnect coupled with LSIs; and (b) SPICE model
of the multi-conductor interconnect.
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Figure 5. (a) Current-controlled voltage source; and (b) self-impedance.

5. ILLUSTRATIVE EXAMPLES

5.1. Crosstalk

In order to investigate the crosstalks, we consider a 4 coupled interconnect as shown in
Figure 6(a), whose parameters are given by Equations (23)–(25). The transient responses
at near and far ends of 4 coupled lines are shown in Figure 6. They have relatively large
crosstalk.

5.2. Inverter circuit

Now, we consider inverter circuit coupled by interconnects as shown in Figure 7(a). Let us
assume the parameters as follows [3]:

[Ri; i=50 �=�m; i=1; 2; : : : ; N; Other elements of R are zeros]



Gi; i=0:01 mS=�m; Gi; i−1 =Gi; i+1 = − 0:002 mS=�m;
Gi; i−2 =Gi; i+2 = − 0:0004 mS=�m
i=1; 2; : : : ; N; Other elements of G are zeros



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Figure 6. (a) 4-coupled interconnects; and (b) crosstalks.
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Figure 7. Inverter circuit, d=20 �m.



Ci; i=1:0 fF=�m; Ci; i−1 =Ci; i+1 = − 0:2 fF=�m;
Ci; i−2 =Ci; i+2 = − 0:04 fF=�m
i=1; 2; : : : ; N; Other elements of C are zeros



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Figure 8. Transient responses: (a) N =1; (b) N =4; and (c) N =10.

We always used the 6 poles from N =1 as the dominant poles for the coupled interconnect,
and the residues are estimated by the least squares method as shown in Section 4. The
responses for N =1, 4 and 10 are shown in Figure 8(a), (b) and (c), respectively. Observe
that the response of the central line of the interconnect has the largest time-delay. Their
phenomena are caused by both interconnects and inverters.

5.3. A fulladder circuit coupled with interconnects

Consider a fulladder circuit coupled with interconnects as shown in Figure 9(a). The coupling
parameters are the same as those of the inverter circuit in example 5.2. The transient responses
at the output stages are shown by solid lines in Figure 9(b), where the dotted lines show the
responses without the interconnects. Observe that the responses with the coupled interconnects
show complicated phenomena combining the time-delays, crosstalks, re�ections, etc.

6. CONCLUSIONS AND REMARKS

In this paper, we have proposed a reduction algorithm for large-scale RCG interconnects,
where the interconnects are replaced by simple asymptotic equivalent circuits familiar with
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Figure 9. (a) Fulladder coupled with interconnects d=20�m; and (b) transient response of the fulladder
circuit, v1; v2; v3: inputs, vs; vc: outputs. The solid lines show the responses with coupled interconnects,

and the dotted lines show the responses without the interconnects.

SPICE. The algorithm will be e�ciently applied to such a large-scale circuit coupled with
interconnects in the substrate.
In Section 2, we showed that a numerical algorithm for computing the exact poles and the

residues given by the impedance matrix. Thus, the impedance matrix is described in the form
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of partial fractions. The partial fractions are realized by the asymptotic equivalent circuits as
shown in Section 3. In Section 4, we have applied it to large-scale interconnects, where the
residues are estimated by the least squares method instead of the analytical method. We found
from the numerical examples that the impedance matrices are approximated by very simple
sparse matrices, whose dominant elements are distributed around the diagonal elements. Thus,
the reduction rate is very large especially for large-scale interconnects.
For the future work, we want to extend the algorithm to the large-scale RLCG interconnects.
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