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Abstract The method of adding chaos noise to the Hopfield neural network (NN) in application to
combinatorial optimization problems has been proposed, and many researchers have suggested that adding
intermittency chaos noise near the three-periodic window of the logistic map will yield the best performance.
However, the Hopfield NN with chaos noise sometimes remains in a group of several solutions. In this study,
some Hopfield NNs with intermittency chaos noise are connected like hierarchical networks in order to find
good solutions of quadratic assignment problems (QAPs). It is confirmed that connected Hopfield NNs

with intermittency chaos noise provide numerous nearly optimal solutions.
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1. Introduction

Combinatorial optimization problems have can de-
scribe various actual problems mathematically. How-
ever, there is a large disparity between describing
problems mathematically and solving them. Solving
a very difficult problem takes a long time using cur-
rent computer systems. (e.g, longer than the age of
the universe) which defeats the purpose. The method
of using the Hopfield neural network (NN) [1] has
been proposed for combinatorial optimization prob-
lems as an approximate means based on search. In
this method, if we choose appropriately connection
weights between neurons according to the given prob-
lem, we can obtain a good solution on the basis of
the energy minimization principle. However, the solu-
tions are often trapped in a local minimum and do
not reach the global minimum. In order to avoid
this critical problem, several people has proposed the
addition of some kinds of noise to the Hopfield NN.
Many researchers have suggested that adding inter-
mittency chaos noise near the three-periodic window
of the logistic map will yield the best performance [2].
In order to clarify why the addition of intermittency
chaos noise is better than that of fully developed chaos
noise, we have investigated the performance using the
burst noise generated by the Gilbert model for trav-
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eling salesman problems (TSPs) [3] and quadratic as-
signment problems (QAPs), which is said to be one
of most difficult problem to solve among combinato-
rial optimization problems [4]. In the results, we con-
firmed that the Hopfield NN with intermittency chaos
noise can provide a large variety of solutions. It is very
important to find a variety of solutions for very diffi-
cult problems with a large number of elements, such
as QAPs. However, it is extremely difficult to obtain
a good parameter set for the network. Furthermore,
the Hopfield NN with intermittency chaos noise has
some problems: the solution of the network remains
at the same state during a certain period; the solu-
tion of the network arrives at states found a number
of previously times. If we can avoid these problems,
the network would provide many more nearly optimal
solutions.

In this study, we connect some Hopfield NNs with
intermittency chaos noise in the manner of hierarchical
networks to provide many nearly optimal solutions of
QAPs. If we connect some networks in an appropriate
way, the search space of solutions would be expanded
while maintaining the energy minimization principle
of the Hopfield NN. We prepare multiple Hopfield NNs
with the same weight pattern between neurons for a
given QAP. Namely, each network operates indepen-
dently to find solutions of the QAP. In order to give
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the networks the task of searching different parts of
the solution space, we propose a method of setting
outputs of some neurons to be zero according to the
firing patterns in the previous networks. From the
results of computer simulations, we confirm that con-
nected Hopfield NNs with intermittency chaos noise
can search a broad range of energy functions and pro-
vide many nearly optimal solutions.

2. Solving QAP with Hopfield NN

Various methods are proposed for solving a QAP,
which is one of the NP-hard combinatorial optimiza-
tion problems. QAP is expressed as follows: given two
matrices, distance matrix C and flow matrix D, find
the permutation p which corresponds to the minimum
value of the objective function f(p) in

N N
F®) =Y CiiDpiypis) (1)
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where Cj; and D;; are the (7, j)-th elements of C and
D, respectively, p(i) is the i-th element of vector p,
and N is the size of the problem. There are many real
applications which are formulated by Eq. (1). One ex-
ample of QAPs is to find an arrangement of factories
to minimize the cost. The cost is given by the dis-
tance between cities and the flow of products between
factories (Fig. 1). Other examples are the placement
of logical modules on an IC chip and the distribution
of medical services in a large hospital.

Because a QAP is very difficult, it is almost im-
possible to determine the optimal solutions in large
problems. The largest problem whose optimal solution
can be obtained may be only 36 according for a recent
study [5]. Furthermore, computation time is very long
for obtaining exact optimal solutions. Therefore, it is
common to develop heuristic methods which search
for nearly optimal solutions in a reasonable time.

To solve an N-element QAP using the Hopfield
NN, NxN neurons are required, and the following
energy function is defined:

N N N
E = Z Z Wim;jnTjn + Z OimTim (2)
1

i,m=1 jn=1 i,m=

The neurons are coupled to each other by the
synaptic connection weight. The weight between the
(4, m)-th neuron and (j,n)-th neuron and the thresh-
old of the (i,m)-th neuron are described by

Wim;jn = —2{A(1—5mn)5,--
+BOpmn(l —6;) + Cijfl"»'i} (3)
0im = A+B
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where A and B are positive constants, ¢ is a normal-
ization parameter to correspond given problems, and
d;; is Kronecker’s delta. The states of N x N neurons
are asynchronously updated according to the following
difference equation:

N
Tm(t+1) =g Z Wim;jnTjn(t)
1

jin= (4)
—Oim + ﬂzim(t))
where g is a sigmoidal function defined as
1
g(z) = P AY (5)
+ exp (—E)

Zim is additional intermittency chaos noise, and § lim-
its the amplitude of the intermittency chaos noise.
Figure 2 shows a conceptual neuron model for this
NN.

We also use the method suggested by Sato et
al. (1.1 in [6]) to decide the firing of neurons.
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Fig. 1 An example of QAP
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Fig. 2 A neuron model

3. Intermittency Chaos Noises

In this section, we describe the intermittency chaos
noise injected into the Hopfield NN. The logistic map
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is used to generate intermittency chaos noise:
Zim(t +1) = @Zim(t)(1 - Zim (1)) (6)

Varying parameter o, Eq. (6) behaves chaotically via
a period-doubling cascade. When we inject intermit-
tency chaos noise into the Hopfield NN, we normalize
iim by

Zim(t) —
(P

RN

Zim (t + 1) = (7)
where Z is the average of 2(t), and o, is the standard
deviation of 2(t). Figure 3 shows an example of the
time series of the intermittency chaos noise near the
three-periodic window for a=3.8274 As we can see
from the figure, the chaotic time series can be divided
into two phases: laminar parts of periodic behavior
with a period of three and burst parts of spread points
over the invariant interval. We have confirmed that
intermittency chaos near the three-periodic window
gives better performance than fully developed chaos
for TSP [3] and QAP [4].
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Fig. 3  Intermittency chaos noise near the three-

periodic window for a=3.8274

4. Connected Hopfield NNs

In this study, we connect some Hopfield NNs with
intermittency chaos noise in the manner of hierarchical
networks in order to find many nearly optimal solu-
tions. We consider that reflecting the firing pattern of
one network to the firing pattern of the next network
by connecting the neurons between two networks is
important. In this study, we propose a method of set-
ting the output of some neurons to zero according to
the firing patterns in the previous networks, in order
to give the networks the tasks of searching different
parts of the solution space. By this method, con-
nected Hopfield NNs with intermittency chaos noise
can search a broad range of the energy function.
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The connected Hopfield NNs with intermittency
chaos noise are shown in Fig. 4. The weights of neu-
rons are configured the same and each network op-
erates independently. In this figure, e represents a
firing neuron and ® a connection neuron. We now ex-
plain the updating of the states of the neurons. First,
all of the neurons in the (K — 1)-th network are asyn-
chronously updated. Next, one neuron is selected from
among the firing neurons of the (K — 1)-th network
at random, and we connect the selected neuron to the
neurons at the same position in the K-th, (K + 1)-th,

- networks. The output of the connected neurons is
set to zero, namely, firing of the neurons is stopped
while updating. Next, all of the neurons in the K-th
network are asynchronously updated.

(K-1)-th
network

K-th
network

(K+1)-th
network

(K+2)-th
network

Fig. 4 Connected Hopfield NNs

5. Simulated Results

The problem used here was chosen from the site
QAPLIB which provides a collection of benchmark
problems [5]. We carried out computer simulations for
“Tail2a” using 2~8 connected Hopfield NNs with in-
termittency chaos noise. The global minimum of this
problem is known to be 224416. The parameters of
the Hopfield NNs are fixed at A = 0.86, B = 0.86, ¢ =
12000 and € = 0.02, and the amplitude of the injected
intermittency chaos noise is fixed at 8 = 0.5. These

441



parameters are selected in order to find many nearly
optimal solutions when we operate only lnetwork for
the Tail2a problem. The total number of updates of
the network is 12000. For example, for 4 connected
networks, the number of updates is 3000 per network,
and the total number of updates becomes 12000.

Next, we explain how to accept solutions. The con-
nected Hopfield NNs with intermittency chaos noise
search various solutions. However, the state of the
Hopfield NNs sometimes remains around a group of
several solutions. We consider that such behavior is
not useful for finding optimal or nearly optimal solu-
tions. Therefore, we adopt the only-different-solutions
method. Namely, we look only at solutions that have
been previously not found.

5.1 Changing the number of networks

The simulated results of the frequency distribution
of the accepted solutions are shown in Fig. 5 for dif-
ferent numbers of connected Hopfield NNs with inter-
mittency chaos noise. For comparison, the result ob-
tained from only one Hopfield NN with intermittency
chaos noise is also shown in Fig. 5(a). The horizontal
axis is the cost of the QAP calculated using Eq. (1)
and the vertical axis is the frequency of the solutions,
which means the number of accepted solutions with
the corresponding cost found during 12000 iterations.

We can see that many nearly optimal solutions are
found for the case of connected Hopfield NNs with in-
termittency chaos noise. When the number of con-
nected networks is large, many good solutions are
found. However, when the number of the networks
exceeds four, the performance of the networks gradu-
ally becomes worse because the number of connected
neurons increases and the networks become sluggish.

From these results, we confirmed that the con-
nected Hopfield NNs with intermittency chaos noise
can provide many good solutions in an expanded are
of the solution space, when an appropriate number of
connected networks is chosen according to the given
problem. This is because each network is given the
task of searching different parts of the solution space.
We believe that it is very important to find many
nearly optimal solutions for very difficult problems,
such as QAPs with a large number of elements, by
connecting several Hopfield NNs with intermittency
chaos noise.

We also consider that it is not difficult to obtain a
good parameter set for the case of connected Hopfield
NNs, because connecting multiple networks has the
same effect as modifying the parameter set of each
network. Namely, the solution space is expanded by
increasing the number of connected networks. This is
similar to the effect of changing the parameter that
governs cost ¢ and the amplitude of noise 3. This
is one of the most practical points of the proposed
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network, because it is usually extremely difficult to
obtain a good parameter set of the Hopfield NNs for
solving difficult combinatorial optimization problems.

5.2 Changing the number of connected neurons

In this section, we investigate the frequency distri-
bution of the accepted solutions when the number of
connected neurons is increased. When the number of
connected neurons is 6, 6 neurons are newly connected
in each network after the 2nd network. Namely, when
the number of connected networks becomes large, the
networks become sluggish because the output of many
neurons is set to zero. The simulated frequency dis-
tribution of the accepted solutions provided by 2 net-
works is shown in Fig. 6. In this figure, we confirmed
that an appropriate number of connected networks ex-
ists. The number of accepted solutions increases as
the number of connected neurons increase. However,
when the number of the connected neurons exceeds
9, the performance of the networks gradually becomes
worse. In the case of 2 networks, the networks gain
good performance when the number of connected neu-
rons is appropriately set. Furthermore, we investigate
the ratio of the number of accepted solutions found
by each network to the total number of accepted solu-
tions to clarify how many solutions each network finds
in each set of connected network. The results in the
case of 2 networks are shown in Fig. 7. We consider
that an appropriate number of connected networks ex-
ists.

Next, the simulated results of the frequency distri-
bution of the accepted solutions found by 8 connected
networks are shown in Fig. 8, when the number of
connected neurons was increased. In this figure, we
confirmed that the number of accepted solutions de-
creases as the number of connected neurons increases.
Namely, when the number of the connected networks
is 8, the networks operate well to find various solutions
when the number of connected neurons is small. The
results of the the ratio of the number of accepted so-
lutions found by each network to the total number of
accepted solutions in the case of 8 connected networks
are shown in Fig. 9. We can see that when the number
of connected neurons is small, the networks find many
solutions and each network can find various kinds of
solution equally well. However, when the number of
connected neurons becomes large, the performance of
networks becomes worse and the networks rarely find
solutions. For reference, the results of the frequency
distribution of accepted solutions in the case of 3 and
6 connected networks are shown in Fig. 10, when the
number of connected neurons was increased.

On the basis of the above results, we consider that
although the performance of the networks is depen-
dent on the problem itself, it is not very effective to
increase the number of connected neurons in an effort
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Fig. 5 Frequency distributions of accepted solutions for various numbers of connected networks (total number of
updates is 12000): (a) 1 network (number of updates is 12000): (b) 2 networks (number of updates is 6000
per network), (c) 3 networks (number of updates is 4000 per network), (d) 4 networks (number of updates
is 3000 per network), (e) 6 networks (number of updates is 2000 per network), (f) 8 networks (number of

updates is 1500 per network)
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to improve the performance of the networks. However,
it is a certainty that all of the networks can search a
broad range of energy functions and find numerous
nearly optimal solutions by connecting neurons be-
tween each network.

6. Conclusion

In this study, we connected some Hopfield NNs
with intermittency chaos noise in the manner of hi-
erarchical networks in order to find many nearly op-
timal solutions of QAPs. We prepared multiple Hop-
field NNs with the same weight pattern which is de-
cided for any given QAP between neurons. Namely,
each network operates to find solutions of the QAP
independently. In order to give the networks the task
of searching different parts of the solution space, we
proposed a method of setting output of some neurons
to zero according to the firing patterns in the pre-
vious networks. Through computer simulations, we
confirmed that the connected Hopfield NNs with in-
termittency chaos noise could search a broad range of
energy functions and obtained many nearly optimal
solutions.
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