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Phase-Inversion Waves in Oscillators Coupled by Two Kinds of
Inductors as a Ladder
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and Mamoru TANAKA†, Member

SUMMARY In this study, nonlinear wave phenomena related to trans-
missions and reflections of the phase-inversion waves around a discontinu-
ity of a coupled system consisting of two kinds of arrays of van der Pol os-
cillators are investigated. By computer simulations, behavior of the phase-
inversion waves around the discontinuity in the coupled system is classified
into eight types. Further, the mechanisms of the transmission and the reflec-
tion of a phase-inversion wave at the discontinuity are explained. Circuit
experiments confirm the simulated results.
key words: coupled oscillators, synchronization, wave propagation, phase
difference, phase-inversion wave

1. Introduction

Large number of coupled limit-cycle oscillators are useful
as models for a wide variety of systems in natural fields, for
example, diverse physiological organs including gastroin-
testinal tracts and axial fiber of nervous systems, convect-
ing fluids, arrays of Josephson junctions and so on. Hence,
it is very important to analyze synchronization and the re-
lated phenomena observed in coupled oscillators in order to
clarify mechanisms of generations or in order to control the
generating-conditions of various phenomena in such natural
systems [1]–[4]. In the field of the electrical engineering,
a lot of studies on synchronization phenomena of coupled
van der Pol oscillators have been carried out up to now [5]–
[12]. Recently, we have discovered very interesting wave
propagation phenomena of phase states between two adja-
cent van der Pol oscillators coupled by inductors as a ladder
[13]. In the study, we named the continuously existing wave
of changing phase states between two adjacent oscillators
from in-phase to anti-phase or from anti-phase to in-phase
as “phase-inversion wave.” Further, we reported the detail
on “phase-wave” in [14], which is propagation of the phase
difference less than 180 degrees between two adjacent os-
cillators. The phase-waves exist only in the transient states
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unlike the phase-inversion waves. When the phase differ-
ence of a phase-wave is smaller than angle drawn into the
anti-phase, the phase-wave disappears. Phase difference de-
creases as the phase-wave propagates. When the phase dif-
ference of a phase-wave is larger than angle drawn into the
anti-phase, the phase-wave changes to the phase-inversion
wave. Phase difference increases as the phase-wave prop-
agates [5], [14]. Thus, the phase-waves change to phase-
inversion waves or disappear.

In this study, by computer simulations, we observe be-
havior of the phase-inversion waves around a discontinuity
in a coupled system consisting of two kinds of arrays of van
der Pol oscillators and classify the phenomena. We explain
the mechanisms of the transmission and the reflection of the
phase-inversion waves at the discontinuity by using the re-
lationship between phase difference and instantaneous fre-
quency. We also carry out circuit experiments.

2. Circuit Model

Circuit model is shown in Fig. 1. In the circuit, N2 identical
van der Pol oscillators are coupled as an array by inductors.
From the 1st to the N1th oscillators they are coupled by in-
ductors L00, while from the N1th to the N2th oscillators they
are coupled by L01. Consequently, there is a discontinuity at
the N1th oscillator.

At first, the v − i characteristics of the nonlinear neg-
ative resistors in the circuit are assumed by the following
functions.

irk(vk) = −g1vk + g3v
3
k (g1, g3 > 0) (1)

Fig. 1 Coupled van der Pol oscillators by two kinds inductors as a ladder.
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The circuit equations governing the circuit in Fig. 1 are
expressed as

[1st oscillator]

ẋ1 = y1

ẏ1 = −x1 + α0(x2 − x1) + f (y1)
(2)

[2nd ∼ (N1 − 1)th oscillators]

ẋk = yk

ẏk = −xk + α0(xk+1 − 2xk + xk−1) + f (yk)
(k = 2, 3, · · ·,N1 − 1)

(3)

[N1th oscillator]

ẋN1 = yN1

ẏN1 = −xN1 + α0(xN1+1 − xN1 )
+α1(xN1−1 − xN1 ) + f (yN1 )

(4)

[(N1 + 1)th ∼ (N2 − 1)th oscillators]

ẋk = yk

ẏk = −xk + α1(xk+1 − 2xk + xk−1) + f (yk)
(k = N1+1, · · ·,N2 − 1)

(5)

[N2th oscillator]

ẋN2 = yN2

ẏN2 = −xN2 + α1(xN2−1 − xN2 ) + f (yN2 )
(6)

where

f (yk) = ε

(
yk − 1

3
y3

k

)
(7)

and

t =
√

L1Cτ, iL1k =

√
Cg1

3L1g3
xk, vk =

√
g1

3g3
yk,

α0 =
L1

L00
, α1 =

L1

L01
, ε = g1

√
L1

C
,

d
dτ
= “ · ”. (8)

The above variables and parameters are shown in
Fig. 1. It should be noted that α0 and α1 correspond to the
couplings and that ε corresponds to the nonlinearity. Equa-
tions (2)–(8) are calculated by using the fourth-order Runge-
Kutta method with the stepsize h = 0.001.

3. Phase-Inversion Wave

In this section, we explain the phase-inversion waves ob-
served from an array of van der Pol oscillators without dis-
continuity, which was investigated in [13]. Figure 2 shows
an example of the phase-inversion waves.

In the computer calculations, we produced the phase-
inversion waves as follows. Almost same initial conditions
are given for all oscillators to produce complete in-phase
synchronization, which is one of the steady states in the sys-
tem. Next, invert the voltage and the current of one oscilla-
tor. In Fig. 2, a pair of phase-inversion waves is generated at
the first oscillator.

Fig. 2 Example of phase-inversion waves. N1 = N2 = 20, α0 = 0.050
and ε = 0.20.

In the diagrams, vertical axes are sums of voltages of
adjacent oscillators and horizontal axis is time. Hence, black
regions show phase states near in-phase synchronization,
and white regions show phase states near anti-phase syn-
chronization. We can observe the generation of a pair of
phase-inversion waves, which is continuously existing wave
propagation to change the phase states from in-phase to anti-
phase and from anti-phase to in-phase.

4. Classification

In this section, we observe transmission and reflection of the
phase-inversion waves for the case of (N1,N2) = (11, 20).
We fix the parameters ε = 0.20 and α0 = 0.050 and α1

is varied as a control parameter. A pair of phase-inversion
waves are generated at the first oscillator.

Figures 3 and 4 show the observed results. Figure 4
shows the phase differences between adjacent oscillators
along time. Vertical axes are the phase differences between
adjacent oscillators. Horizontal axes are time. Φx,y is a
phase difference between xth oscillator and yth oscillator.

According to the parameter value of α1, the observed
phenomena are classified into eight types as follows,

(a) ∼around 0.002: A pair of phase-inversion waves is re-
flected at the discontinuity almost completely.

(b) around 0.003 ∼ 0.025: A pair of phase-inversion waves
is reflected and is transmitted. Complex phenomena
are observed after the reflection and the transmission.

(c) around 0.026 ∼ 0.044: A pair of phase-inversion waves
is reflected and is transmitted. The phase-inversion
waves reflected at the discontinuity change to a pair of
phase-waves.

(d) around 0.045 ∼ 0.054: A pair of phase-inversion waves
is transmitted almost completely.

(e) around 0.055 ∼ 0.123: A pair of phase-inversion waves
is transmitted. A new pair of phase-waves is generated
after the phase-inversion waves are transmitted.

(f) around 0.124 ∼ 0.174: A pair of phase-inversion waves
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Fig. 3 Observation of the transmission and the reflection of a pair of phase-inversion waves. N1 = 11,
N2 = 20, α0 = 0.050 and ε = 0.20.

is reflected and is transmitted. The phase-inversion
waves change to phase-waves after the reflection and
the transmission.

(g) around 0.175 ∼ 0.232: A pair of phase-inversion waves
is reflected and is transmitted. The phase-inversion
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Fig. 4 Observation of the transmission and the reflection of a pair of phase-inversion waves by phase
differences. N1 = 11, N2 = 20, α0 = 0.050 and ε = 0.20.

waves transmitted through the discontinuity change to
a pair of phase-waves.

(h) around 0.233 ∼: A pair of phase-inversion wave is re-
flected and is transmitted. The phase-inversion waves
change to phase-waves after the transmission. It is
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Fig. 5 Relationship between value of α1 and observed phenomena. N1 = 11, N2 = 20, α0 = 0.050
and ε = 0.20.

difficult to observe in the figure, but the first phase-
inversion wave is reflected at the discontinuity, collides
with the second phase-inversion wave and changes to a
pair of phase-waves.

It should be noted that we can observe different trans-
mission phenomena for the cases of L01 � L00 and L01 <
L00. Namely, for L01 � L00 (α1 � α0), phase-inversion
wave is not transmitted beyond the discontinuity. While, for
L01 < L00 (α1 > α0), phase-inversion wave is transmitted as
phase-wave beyond the discontinuity. This interesting dif-
ference is explained in the Sect. 5.

Figure 5 summarizes the parameter regions corre-
sponding to the above-mentioned eight types of the observed
phenomena.

5. Mechanisms of Transmission and Reflection

In this section, the transmission mechanism and the reflec-
tion mechanism of the phase-inversion waves at the discon-
tinuity are explained according to the computer calculated
results in the previous section.

It has been already known that oscillation frequency
of in-phase synchronization of oscillators coupled by induc-
tors is different from that of anti-phase synchronization [5].
If we define the oscillation frequency of in-phase synchro-
nization as fin and the oscillation frequency of anti-phase
synchronization as fanti, fin is smaller than fanti [8]. Further,
the difference between fin and fanti increases as coupling in-
ductance increases. For example, when even van der Pol
oscillators are coupled by inductors as a ring and ε is very
small, theoretical values are obtained by Eqs. (9) and (10)
[10].
[Frequency of in-phase synchronization]

fin =

√
1

1 + α
· 1

2π
(9)

[Frequency of anti-phase synchronization]

fanti =

√
1 + 4α
1 + α

· 1
2π

(10)

Computer calculated fin and fanti are slightly different
from these values and are obtained by computer calculations
as follows:

When α = 0.0500 and ε = 0.2000, fin = 0.159 [1/τ]
and fanti = 0.174 [1/τ].

We use this characteristic to explain the mechanisms

Fig. 6 Transmission at the discontinuity for the case of α1 = α0. N1 =

11, N2 = 20, α0 = 0.0500, α1 = 0.0500 and ε = 0.20.

of the transmission and the reflection of the phase-inversion
waves. fin and fanti in Figs. 6, 7 and 8 show these values.

5.1 Transmission Mechanism

In order to explain the transmission mechanism, we con-
sider the case of α0 � α1. Because the transmission is a
typical phenomenon observed for that case. We can say the
transmission mechanism is similar to the propagation mech-
anism [13] of a phase-inversion wave, if α0 � α1 is satisfied.
Hence, the transmission mechanism is explained as follows:

1. Let us assume that OSC11 ∼ OSC20 are in-phase syn-
chronization and that the wave changing from in-phase
into anti-phase is going to reach OSC11 from the di-
rection of OSC1 (see (a) in Fig. 6).

2. As phase difference between OSC10 and OSC11Φ10,11

approaches −180◦ (see (b) in Fig. 6), instantaneous fre-
quency of OSC11 f11 changes from fin to fanti (see (c)
in Fig. 6).
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Fig. 7 Reflection at the discontinuity for the case of α1 � α0. N1 = 11,
N2 = 20, α0 = 0.0500, α1 = 0.0001 and ε = 0.20.

3. The change of f11 causes decrease of Φ11,12 (see (d) in
Fig. 6). Speed of the decrease is decided by the differ-
ence between f11 and f12. This means that propagation
speed of the wave is decided by the difference between
fin and fanti.

4. When Φ11,12 reaches almost −180◦, f6 is equal to fanti

(see (e) in Fig. 6).

As a result, the phase-inversion wave is transmitted
through the discontinuity.

5.2 Reflection Mechanism

In order to explain the reflection mechanism, we consider
two typical cases for the reflection. Namely the coupling
parameter for one side of the discontinuity is much larger or
much smaller than that of the other side.

5.2.1 When L01 � L00 (i.e. α1 � α0)

1. Let us assume that OSC10∼OSC20 are in-phase syn-
chronization and that a phase-inversion wave from in-
phase to anti-phase reaches at OSC10 from the direc-
tion of OSC1.

2. Instantaneous frequency of OSC10 f10 begins to

Fig. 8 Reflection at the discontinuity for the case of α1 � α0. N1 = 11,
N2 = 20, α0 = 0.0500, α1 = 0.2000 and ε = 0.20.

change from fin toward fanti, because in-phase syn-
chronization between OSC9 and OSC10 breaks by the
phase-inversion wave (see (a) in Fig. 7).

3. As f10 changes from fin to fanti, phase difference be-
tween OSC10 and OSC11 Φ10,11 approaches −180◦
(see (b) in Fig. 7).

4. AsΦ10,11 approaches −180◦, f11 begins to change from
fin to fanti (see (c) in Fig. 7).

5. Change of f11 does not propagate to OSC12 immedi-
ately, because L01 is much larger than L00 (see (d) in
Fig. 7).

6. Hence, f11 cannot reach fanti and begins returning to fin
(see (e) in Fig. 7).

7. As f11 returns to fin, Φ10,11 continues to increase until
reaching −360◦ (see (f) in Fig. 7).

8. By the effect of the decrease of Φ10,11, f10 begins to
decreases again from fanti toward fin (see (g) in Fig. 7).

9. Φ11,12 becomes −180◦, because in spite of constant
value which is f12, f11 changes from fanti and returns
to fin again (see (h) in Fig. 7).
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Remark: As L01 approaches L00, it becomes easier that
change of f11 propagates to OSC12. Hence, we could ob-
serve that the phase-inversion wave is transmitted beyond
the discontinuity as shown in Figs. 2(b), (c) and 3(b), (c).
On the other hand, the reflection becomes smaller, because
being hard to change f11 is the main reason of the generation
of the reflection.

5.2.2 When L01 � L00 (i.e. α1 � α0)

1. Let us assume that OSC10∼OSC20 are in-phase syn-
chronization and that a wave from in-phase to anti-
phase reaches at OSC10 from the direction of OSC1.

2. Instantaneous frequency of OSC10 f10 begins to
change from fin toward fanti, because in-phase syn-
chronization between OSC9 and OSC10 breaks by the
phase-inversion wave (see (a) in Fig. 8).

3. As f10 changes from fin to fanti, phase difference be-
tween OSC10 and OSC11 Φ10,11 approaches −180◦
(see (b) in Fig. 8).

4. As Φ10,11 approaches −180◦, f11 changes from fin to
fanti (see (c) in Fig. 8).

5. Change of f11 propagates to OSC12 immediately, be-
cause L01 is much smaller than L00 (see (d) in Fig. 7).

6. Hence, in-phase synchronization between OSC11 and
OSC12 is hard to break (see (e) in Fig. 8). And f11 and
f12 return to fin together (see (f) in Fig. 8).

7. As f11 returns to fin, Φ10,11 continues to increase until
reaching −360◦ (see (g) in Fig. 8).

Hence, when L01 is much smaller than L00, the trans-
mission always exists with the reflection.
Remark: As L01 approaches L00, it becomes more difficult
that phase states of OSC11 and OSC12 hold in-phase syn-
chronization. Hence, the reflection of the phase-inversion
wave disappears as shown in Figs. 2(d), (e) and 3(d), (e).

6. Circuit Experiments

In this section, we confirm the generation of the transmis-
sion and the reflection of the phase-inversion wave by cir-
cuit experiments. The typical result for (N1,N2) = (7, 10)
is shown in Fig. 9. The corresponding computer simulated
result is shown in Fig. 10. We observe that the circuit exper-
imental result and the computer simulated result agree well.
The small amount of the difference between the two results
may come from the resistance in real inductors or difficulty
of setting initial phase difference in real circuit experiments.

Fig. 9 Experimental result. N1 = 7, N2 = 10, L00 = 1160 [mH], L01 =

242 [mH], L1 = 200 [mH], C = 47 [nF] and r = 1 [kΩ].

Fig. 10 Computer simulated result. N1 = 7, N2 = 10, α0 = 0.0500,
α1 = 0.2800 and ε = 0.20.

7. Conclusions

In this study, we observed behavior of a pair of phase-
inversion waves around the discontinuity of the system con-
sisting of two parts of coupled van der Pol oscillators. Ob-
served phenomena by computer calculations were classified
into eight types. We explained the mechanism of the trans-
mission and the reflection of the phase-inversion wave at the
discontinuity and made clear that different mechanisms re-
flect the waves for the cases of L01 > L00 and L01 < L00.
Further, we observed a pair of phase-inversion waves by cir-
cuit experiments. The circuit experimental results agreed
with the numerical calculated results very well.
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