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PAPER

Generation of Various Types of Spatio-Temporal Phenomena in
Two-Layer Cellular Neural Networks

Zonghuang YANG†a), Student Member, Yoshifumi NISHIO††, Member, and Akio USHIDA††, Fellow

SUMMARY The paper discusses the spatio-temporal phenomena in au-
tonomous two-layer Cellular Neural Networks (CNNs) with mutually cou-
pled templates between two layers. By computer calculations, we show
how pattern formations, autowaves and classical waves can be regenerated
in the networks, and describe the properties of these phenomena in detail.
In particular, we focus our discussion on the necessary conditions for gen-
erating these spatio-temporal phenomena. In addition, the influences of
the template parameters and initial state conditions of CNNs on the spatio-
temporal phenomena are investigated.
key words: two-layer CNN array, reaction-diffusion equation, pattern for-
mation, autowave, classical wave

1. Introduction

Studies of dynamic phenomena in arrays composed of oscil-
latory [1]–[7] and chaotic elements [8]–[18] are very impor-
tant for understanding the phenomena observed in natural
fields. A Cellular Neural Network (CNN) is a locally con-
nected network [19], in which each cell is connected only to
its neighbor, so the CNN allows efficient VLSI implemen-
tation of an analogue array-computing machine [20]–[24].
Because of its extraordinary computational power, the CNN
is an ideal tool for the simulation of various spatio-temporal
dynamics in discrete space.

Since the mid-1990s, investigations into the spatio-
temporal dynamics in cellular neural networks have been
widely carried out, and many papers have been published
[5]–[18]. They have discussed the pattern formations and
various autowaves such as excitability waves, concentration
waves and so on, as observed in many fields such as biology,
physics and chemistry. To date, these CNN arrays, com-
posed of chaotic circuits [9]–[18] or second-order nonlinear
circuits obtained by appropriately “reducing” Chua’s circuit
[8], have been examined for the generation of the above phe-
nomena. In these studies, CNNs are used to approximate
various nonlinear partial differential equations, particularly
the well-known reaction-diffusion equations that show the
Turing pattern and propagation phenomena in various con-
tinuous media [25]. In [5]–[7], Arena and coworkers and
Manganaro et al. conducted studies on some other travelling
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waves and self-organization phenomena in two-layer CNNs
under the condition that the CNN cell exhibits slow-fast dy-
namics. This condition is so rigorous that the CNN places
restrictions on other applications.

The objective of this work is to study spatio-temporal
phenomena occurring in the mutually coupled two-layer
CNNs, based on the CNN temporal eigenvalues. The two-
layer CNNs possess a simpler structure, compared with the
previously studied CNNs [8], [18]. We found from numeri-
cal simulations that similar phenomena can also be observed
in our two-layer CNNs under milder necessary conditions.
In addition to some nonlinear spatio-temporal phenomena
such as autowaves and pattern formations, we found that an-
other class of dynamic phenomena – classical wave propa-
gation phenomena observed everywhere – can be simulated
as well in the two-layer CNNs. These types of propagation
phenomena have the properties of reflection, permeation and
superposition. In particular, the necessary conditions for
generating these spatio-temporal phenomena are discussed.

This paper is organized as follows: In Sect. 2, we re-
view the two-layer CNNs with mutually coupled templates
between the two layers. In Sects. 3 and 4, we discuss var-
ious spatio-temporal phenomena in terms of the temporal
eigenvalue of the mutually coupled two-layer CNNs. The
necessary conditions for these phenomena are indicated by
the use of a decoupling technique. Several simulations for
interesting spatio-temporal phenomena are shown and de-
scribed in detail. In addition, the influences of the parame-
ters in the cloning templates on propagation phenomena are
also investigated by employing numerical calculation.

2. Two-Layer CNN Architecture

First, we review the mutually coupled two-layer CNN [26]–
[28] used for investigating spatio-temporal phenomena. The
CNN is described on the basis of the well-known Chua-Yang
CNNs.

The system equations are formulated by introducing
two coupling templates C1 and C2. In this paper, we also
assume that the two-layer CNNs are composed of two-
dimensional M by N array structures as shown on the left-
hand side in Fig. 1. Each cell in the array is denoted by
c(i, j), where (i, j) stands for the position of a cell in the
array, for 1 ≤ i ≤ M and 1 ≤ j ≤ N. The cell local cou-
pling is shown on the right-hand side in Fig. 1. Each cell
has two state variables x1,i j and x2,i j, where the subscripts 1
and 2 denote the first layer and the second layer of the two-
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Fig. 1 A two-dimensional cellular neural network and a cell linked to
neighbor cells with various templates.

layer CNN array. The state equations of the cell are given
by two first-order differential equations given by Eq. (1),
and the output equations are given by Eq. (2), where f (·)
is a piecewise-linear nonlinear function defined by Eq. (3).
The variables u and y refer to the input and the output vari-
ables of the cell, respectively. r is the coupling radius [19].
Nr(i, j) denotes the neighbor cells of radius r of a cell c(i, j).
A(i, j; k, l), B(i, j; k, l), C(i, j; k, l) and I denote the feedback
coefficient, control coefficient, coupling coefficient between
layers and bias current, respectively.

dx1,i j

dt
=−x1,i j + I1

+
∑

c(k,l)∈Nr(i, j) A1(i, j; k, l)y1,kl

+
∑

c(k,l)∈Nr(i, j) B1(i, j; k, l)u1,kl

+
∑

c(k,l)∈Nr(i, j) C1(i, j; k, l)y2,kl
dx2,i j

dt
=−x2,i j + I2

+
∑

c(k,l)∈Nr(i, j) A2(i, j; k, l)y2,kl

+
∑

c(k,l)∈Nr(i, j) B2(i, j; k, l)u2,kl

+
∑

c(k,l)∈Nr(i, j) C2(i, j; k, l)y1,kl



(1)

y1,i j = f (x1,i j)
y2,i j = f (x2,i j)

}
(2)

f (x) = 0.5(|x + 1| − |x − 1|). (3)

When r = 1, the CNN cloning templates [19] A1, A2, B1,
B1, C1 and C2 are 3 times 3 matrices, which can be de-
scribed to have a similar form as that of (4).


A(i, j; i−1, j−1) A(i, j; i−1, j) A(i, j; i−1, j+1)
A(i, j; i, j−1) A(i, j; i, j) A(i, j; i, j+1)
A(i, j; i+1, j−1) A(i, j; i+1, j) A(i, j; i+1, j+1)

 (4)

The CNN is efficient for image processing applications
such as center point detection, skeletonization, and so forth,
which have been reported in our previous studies [26]–[28].
In the following sections, we discuss the spatio-temporal
phenomena in the two-layer CNN.

3. Pattern Formations and Active Propagation Phe-
nomena

3.1 Common Mechanism

Many nonlinear reaction-diffusion partial differential equa-
tions (PDEs) [25] have been proven to generate various
types of nonlinear spatio-temporal phenomena, such as pat-
tern formations, autowaves and self-organization phenom-
ena. The concept of reaction-diffusion CNNs has been for-
malized to reproduce similar behaviors in Ref. [14], because
they are mathematically described by a discretized version
of the following well-known system of nonlinear partial dif-
ferential equations – reaction-diffusion equations:

∂u
∂t
= f (u) + D∇2u, (5)

where u∈ Rm represents a vector of continuously chang-
ing spatial variables, f (u)∈ Rm their kinetics governing the
oscillation in an isolated point of a medium, and the last
term represents diffusion. D is an m × m diagonal matrix,
which describes the intensity of diffusive coupling between
the components of u, and

∇2ui =
∂2ui

∂x2
+
∂2ui

∂y2
, i = 1, 2, · · · ,m (6)

is the Laplacian operator in R2.
In order to use the two-layer CNNs to approximate the

above reaction-diffusion equation, we consider the equation
with u∈ R2 in finite space, and assume it to be as follows:

u̇1 = −u1 + a1v1 + c1v2 + D1∇2v1
u̇2 = −u2 + a2v2 + c2v1 + D2∇2v2

}
(7)

where a1, a2, c1 and c2 are parameters, D1,D2 are diffusion
coefficients, and v is a nonlinear function of u defined by (3).
By expanding the Laplacian operator in the discrete space,
Eq. (7) can be written as:

u̇1;i j = −u1;i j + a1v1;i j + c1v2;i j

+D1(v1;i−1, j + v1;i+1, j

+v1;i, j−1 + v1;i, j+1 − 4v1;i j)
u̇2;i j = −u2;i j + a2v2;i j + c2v1;i j

+D2(v2;i−1, j + v2;i+1, j

+v2;i, j−1 + v2;i, j+1 − 4v2;i j)


(8)

where 1 ≤ i ≤ M and 1 ≤ j ≤ N. Compared with Eq. (1), the
state equation (8) presents a two-layer autonomous reaction-
diffusion standard CNN. The cloning template of the two-
layer CNN array is described as follows:

A1 =


0 D1 0

D1 −4D1 + a1 D1

0 D1 0

 , C1 =


0 0 0
0 c1 0
0 0 0

 ,

A2 =


0 D2 0

D2 −4D2 + a2 D2

0 D2 0

 , C2 =


0 0 0
0 c2 0
0 0 0

 ,
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B1 = 0, B2 = 0, I1 = 0, I2 = 0. (9)

If at least one of the temporal eigenvalues has a positive
real part, the CNN constructed by the connection between
diffusing cells will become unstable and produce the pattern
formations or active propagation phenomena. The necessary
condition is described by Eq. (10), which is directly derived
from those conditions obtained from the Turing patterns in
an array of coupled circuits [8]:

(a1 − 1)
D1

+
(a2 − 1)

D2
> 0

[(a1 − 1)D2 − (a2 − 1)D1]2 > −4D1D2c1c2

 (10)

The above condition ensures that only the two-layer
CNN array is unstable in the linear region. As time in-
creases, due to the positive real-part temporal eigenvalues,
the cell states enter into nonlinear regions (i.e., saturation re-
gion or partial saturation region). In [8], the general princi-
ple of pattern formation has been indicated. The key mech-
anism of pattern formation is based on two types of neces-
sary conditions. In addition to condition (10), the second
condition refers to the requirement for the isolated cell to
have a unique, stable equilibrium point. The two necessary
conditions mean that the above equilibrium is merely a solu-
tion to the CNN array, which corresponds to a homogeneous
pattern, but it should become unstable upon introducing the
diffusion between cells; the pattern will also correspond to
some other equilibrium points that happen to be stable for
the pattern formation. On the other hand, if the isolated cell
has no stable equilibrium point, then it behaves as a nonlin-
ear oscillator with a limit cycle for the active wave propaga-
tion. These behaviors concerning the isolated cell have been
discussed in detail in Ref. [29].

3.2 Pattern Formations

In this and the next subsection, we investigate the spatio-
temporal phenomena in the two-layer CNNs by applying
the aforementioned necessary conditions. Some significant
findings are shown from the analysis of simulations.

3.2.1 Checkerboard

Experiment 1: This experiment is carried out under a two-
layer CNN array consisting of 20 × 20 cells. The initial
states of both layers are initiated by random noise shown in
Fig. 2(a). In this case, the zero-fixed boundary condition is
adopted. Under the template:

A1 =


0 −0.2 0
−0.2 1.8 −0.2

0 −0.2 0

 , C1 =


0 0 0
0 −1 0
0 0 0

 ,

A2 =


0 0.1 0

0.1 0.3 0.1
0 0.1 0

 , C2 =


0 0 0
0 1 0
0 0 0

 ,
B1 = 0, B2 = 0, I1 = 0, I2 = 0, (11)

we found a solution such that a stable output pattern with

Fig. 2 Checkerboard pattern formation in a two-layer CNN with random
initial state condition. (a) is initial state, (b) is transient result, and (c) is
steady output result.

the white-black grid alternating between the cells (so-called
checkerboard) shown in Fig. 2(c) finally results in the first
layer output of the CNN, where the states of all cells settle
into the saturation region (i.e., each cell output is 1 or −1
corresponding to black or white, respectively).

Here, it should be emphasized that, the checkerboard
pattern and stripe pattern formations in the next subsection
can be obtained in a single-layer CNN array only with an in-
finite CNN structure [30]. Namely, a single-layer CNN with
finite structure can only generate a defective checkerboard
and stripe patterns, because the states of some cells, partic-
ularly near the boundary region, do not entirely enter into
the saturation region. Note that the perfect checkerboard
can be obtained in the two-layer CNN array with the finite
structure. Moreover, we found that, irrespective of the ini-
tial states and the size of the array, the perfect checkerboard
pattern can be obtained with the template parameter (11).

3.2.2 Stripe

Experiment 2: In this experiment, the procedure of stripe
pattern formation is investigated. The CNN array consists
of 100 × 100 cells with a zero-fixed boundary condition; its
template is as follows:

A1 =


0 0.1 0

0.1 2.2 0.1
0 0.1 0

 , C1 =


0 0 0
0 −1 0
0 0 0

 ,

A2 =


0 0.01 0

0.01 2.56 0.01
0 0.01 0

 , C2 =


0 0 0
0 1 0
0 0 0

 ,
B1 = 0, B2 = 0, I1 = 0, I2 = 0. (12)

We observe that a stripe pattern formation occurs in the
CNN, as shown in Fig. 3, where (a), (b) and (c) are respec-
tively the initial state, the transient result and the steady out-
put of the CNN. From the analysis of the simulation results,
it is seen that the pattern formation process starts from the
objects in the image (i.e., nonzero initial conditions), prop-
agates around the objects, and generates new stripes with
almost the same geometry as that of the original initiated
objects. Then, it propagates again until the entire CNN ar-
ray reaches the steady state. When the propagation wave
front collides with another wave front or the boundary, the
wave fronts eliminate each other without any interference or
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Fig. 3 Stripe pattern formation with D1 = 0.1. (a) is initial state, (b) is
transient result, and (c) is steady output result.

Fig. 4 Stripe pattern formation with D1 = 0.2. (a) is initial state, (b) is
transient result, and (c) is steady output result.

reflection.
Moreover, the density of the stripe pattern can be ad-

justed by suitably changing the template parameters. The
simulation example is shown in Fig. 4, where the template
is the same as (12) except that the diffusion coefficient D1

is set to 0.2 instead of 0.1. Thus, the lower density stripe
pattern formation is obtained.

From the above two simulation examples, we found
that the shape of the stripe pattern is dependent on the initial
state of the CNN array, and the density of the stripe pattern
can be controlled by the template parameters. Thus, many
interesting stripe patterns such as the coats of animals, fin-
gerprints, and so forth may be regenerated by suitably se-
lecting the initial conditions of the CNN array and the sys-
tem parameters.

3.3 Active Propagation Phenomena

In this subsection, an investigation into active propagation
phenomena is carried out in the two-layer CNN, which en-
ables us to determine some basic properties of these phe-
nomena. In the following experiment, an array of 100× 100
cells is considered. Similarly, the selected parameters of the
template satisfy the necessary condition (10) to guarantee
the instability of the entire CNN with diffusion. Next, let
us observe how the disturbance initiated inside the network
propagates in the plane array.

Experiment 3: In this experiment, the initial condition
is the same as in Experiment 2. The zero-flux boundary
condition is adopted and the template is selected as follows:

A1 =


0 0.1 0

0.1 1.1 0.1
0 0.1 0

 , C1 =


0 0 0
0 −1 0
0 0 0

 ,

(a)

(b)

(c)

(d)

Fig. 5 A simulation for autowaves with two concentric circular waves.
(a) is the initial state, (b), (c) and (d) show three snapshots obtained for
different iterates.

A2 =


0 −0.01 0
−0.01 1.04 −0.01

0 −0.01 0

 , C2 =


0 0 0
0 1 0
0 0 0

 ,
B1 = 0, B2 = 0, I1 = 0, I2 = 0. (13)

Figure 5 shows four snapshots of this simulation. The sim-
ulation result indicates that two concentric circular waves
are generated. Their wave fronts propagate in all directions
through the network from the initialized positions. Behind
the wave fronts, the concentric waves centered at the cells
where the process was initiated are visible. Moreover, they
do not conserve energy but preserve amplitude and wave-
form, they are not reflected from obstacles but the colliding
wave fronts are annihilated, and they do not produce any in-
terference but diffract and pass around obstacles. Namely,
this phenomenon is considered to be an autowave.

Note that we have used a simpler two-layer CNN ar-
ray to reproduce the same phenomena with those observed
in arrays made of chaotic cells [17], [18], and here the cell
is merely a general nonlinear oscillator having a limit cycle,
but does not exhibit slow-fast or chaotic dynamics. Simi-
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larly, if we suitably adjust the diffusion coefficients D1 or
D2, we can control the wavelength and speed of the propa-
gation.

4. Classical Wave Propagation

4.1 Necessary Condition

We have shown in Sect. 3 that the two-layer CNNs can re-
produce the pattern formation and the active propagation
phenomena. These CNNs have a common property in that
at least one of the temporal eigenvalues of CNNs has a pos-
itive real part. Moreover, this property is also one of the
necessary conditions for the binary image processing appli-
cations of the two-layer CNNs [30]. However, when all the
temporal eigenvalues have zero or negative real parts, what
happens in the CNNs? We examine the phenomena in this
section.

Let us consider an autonomous two-layer CNN with
mutual coupling between layers. The equation is described
in the following form:

ẋ1,i j = −x1,i j + (a1 + 1)y1,i j + c1y2,i j

+d1∇2y2,i j

ẋ2,i j = −x2,i j + (a2 + 1)y2,i j + c2y1,i j

+d2∇2y1,i j


(14)

where a1, a2, c1, c2, d1 and d2 are parameters. By expanding
the Laplacian operator in discrete form, and in comparison
with Eq. (1), the two-layer CNN has the following template:

A1 =


0 0 0
0 a1 + 1 0
0 0 0

 , C1 =


0 d1 0
d1 −4d1 + c1 d1

0 d1 0

 ,

A2 =


0 0 0
0 a2 + 1 0
0 0 0

 , C2 =


0 d2 0
d2 −4d2 + c2 d2

0 d2 0

 ,
B1 = 0, B2 = 0, I1 = 0, I2 = 0. (15)

If we assume that all the cells remain in the linear re-
gion, then the state equation (14) can be written as follows:

ẋ1,i j = a1x1,i j + c1x2,i j + d1∇2x2,i j

ẋ2,i j = a2x2,i j + c2x1,i j + d2∇2x1,i j.

}
(16)

Thus, the above linear differential equation can be solved
by decoupling it into MN-decoupled systems of two first-
order linear differential equations, and considering the MN
orthonormal space-dependent eigenfunction φMN(m, n; i, j)
of the discrete Laplacian operator, it can be assumed for al-
most all boundary conditions that:

∇2φMN(m, n; i, j) = −k2
mnφMN(m, n; i, j), (17)

where M and N are the CNN dimensions, m and n are the
summation indexes for the current space variables i and j
(i = 0, 1, · · · ,M − 1; j = 0, 1, · · · ,N − 1), and k2

mn are
the corresponding spatial eigenvalues. In particular, for the
zero-flux boundary condition, the spatial eigenfunction and

eigenvalue can be assumed as follows:

φMN(m, n; i, j)=cos
(2i+1)mπ

2M
cos

(2 j+1)nπ
2N

(18)

and

k2
mn = 4

(
sin2 mπ

2M
+ sin2 nπ

2N

)
. (19)

Then, the expected solution of Eq. (16) can be expressed as
a weighted sum of the M × N orthogonal space dependent
eigenfunctions φMN(m, n; i, j) in the following form:

x1,i j(t) =
M−1∑
m=0

N−1∑
n=0

(αmneλmn1t + βmneλmn2t)φMN(m, n; i, j)

x2,i j(t) =
M−1∑
m=0

N−1∑
n=0

(γmneλmn1t + δmneλmn2t)φMN(m, n; i, j)


(20)

where αmn, βmn, γmn, δmn are constants depending on the
initial conditions. λmn1 and λmn2 are the roots of the fol-
lowing characteristic equation (21), which are influenced by
the spatial eigenvalue k2

mn corresponding to the spatial eigen-
function φMN(m, n; i, j).∣∣∣∣∣∣λmn

(
1 0
0 1

)
−
(

a1 c1−k2
mnd1

c2−k2
mnd1 a2

)∣∣∣∣∣∣ = 0 (21)

and

λmn[k2
mn] =

1
2

[
(a1 + a2)

±
√

(a1 − a2)2 + 4(k2
mnd2 − c2)(k2

mnd1 − c1)
]

(22)

Equation (20) is important because the cell states of the
two-layer CNN are given as the time-dependent weighted
sums of spatial eigenfunctions. We have discussed in Sect. 3
that, if at least one of the temporal eigenvalues has a posi-
tive real part, the two-layer CNNs can be used for model-
ing the active media for nonlinear phenomena such as pat-
tern formation and autowaves. However, if all the temporal
eigenvalues have a zero or negative real part, all the states
of the CNN are in the linear region, which agrees with our
assumption above. Thus, the CNNs have the properties of
linear space, such as superposition. Therefore, we can also
use this CNN to model the passive media with/without loss
in linear space.

4.2 Classical Waves

In this subsection, we investigate the passive propagation
phenomena with/without loss in two-layer CNNs. In order
to compare these with the propagation phenomena (Experi-
ments 2, 3) in active media, we adopt the same-sized array
with the same initial states and boundary condition (zero-
flux) in Experiment 4.

Experiment 4: In this experiment, we observe the prop-
agation phenomena in a two-layer CNN with/without loss.
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(a)

(b)

(c)

(d)

Fig. 6 A simulation for the passive wave propagation phenomenon with-
out loss. (a) is the initial state, (b), (c) and (d) show three snapshots ob-
served in different iterates.

If we select the parameter set to satisfy that all the temporal
eigenvalues of Eq. (20) have a zero real part, then the two-
layer CNN will become a system without loss. This type
of two-layer CNN can be used for modeling passive media
without loss. For example, for the selected parameter set of
a1 = 0, a2 = 0, d1 = −0.5, d2 = 0.5, c1 = −5, and c2 = 5,
all the temporal eigenvalues of the CNN are complex num-
bers with a zero real part. The simulation result is shown in
Fig. 6, where (a) is the initial state of the CNN and (b)–(d)
are three snapshots obtained as time progresses.

The simulation result shows that the circular waves
propagating from the initialized position are generated.
These circular waves propagate in all directions through the
plane array and their amplitudes decrease through propaga-
tion. When the waves collide with each other, they do not

Fig. 7 Graph of sum of State-Error Square vs. time for the passive wave
propagation phenomenon without loss.

(a)

(b)

(c)

(d)

Fig. 8 A simulation for the passive wave propagation phenomenon with
loss. (a) is the initial state, (b), (c) and (d) show snapshots observed in
different iterates.
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Fig. 9 Graph of sum of State-Error Square vs. time for the passive wave
propagation phenomenon with loss.

annihilate and reflect, but permeate through and superpose
on each other. When they collide with the boundary, the
waves are reflected. Moreover, after the waves are repeat-
edly reflected and superposed, the initialized positions be-
come invisible. These behaviors are similar to those of clas-
sical waves. The wave propagation continues forever due to
the zero real part temporal eigenvalue. This dynamic pro-
cess can be observed from the graph of the sum of State-
Error Square versus the integration time shown in Fig. 7.
The sum of State-Error Square is defined as:

S CNN(t) =
M∑

i=1

N∑
j=1

((x1,i j(t + ∆t) − x1,i j(t))
2

+ (x2,i j(t + ∆t) − x2,i j(t))
2). (23)

We can see from the graph that the sum of State-Error
Square converges on a horizontal line with a value.

On the other hand, if we select the parameter set to
satisfy all the temporal eigenvalues of the CNN having neg-
ative real parts, then each cell state will decay to zero, which
can be derived from Eq. (20). This situation is suitable for
the model of the passive media with loss. For example, if
the parameters are set as a1 = −0.04, a2 = 0, d1 = −0.5,
d2 = 0.5, c1 = −5, and c2 = 5, then all the temporal eigen-
values of the CNN will be complex numbers with a negative
real part. Therefore, the CNN behaves as a damped system.
The simulation result is shown in Fig. 8, where (a) shows the
initial state of the CNN, and (b)–(d) show snapshots taken
at three different times. From the simulation results, we can
see that the propagation phenomenon has the same proper-
ties as the above loss-less system. However, the network
is calm in the final due to the temporal eigenvalues having
a negative real part. The dynamic process can be similarly
demonstrated from the graph of sum of State-Error Square
as shown in Fig. 9.

5. Conclusions

In this paper, we have shown that many types of spatio-
temporal phenomena, such as pattern formation, autowaves
and classical waves, can be reproduced in the two-layer
CNNs with a simple structure. The conditions necessary

for obtaining these phenomena have been indicated. The ef-
fects on propagation phenomena due to changes of system
parameters have also been investigated. On the basis of our
research results, we found that the two-layer CNN can be
considered not only as a model of active media, but also
as a model of passive media with/without loss. Moreover,
it is worth mentioning that the type of two-layer CNN has
a simpler structure compared with those arrays that consist
of chaotic circuits or second-order nonlinear circuits. Al-
though the pattern formations can be theoretically obtained
in an infinite single-layer CNN array, applying the two-layer
CNNs with an arbitrary number of cells to these problems
enables us to obtain perfect pattern formations.

In addition, the two-layer CNNs described in this pa-
per have zero B-templates. Thus, we can consider the C-
template as a B-template in every layer, and mutually link
one layer output with the other layer input. Therefore, it
is possible to realize the above two-layer CNN Universal
Machine (CNNUM) as a hardware simulator for simulat-
ing spatio-temporal phenomena, based on the current single-
layer CNNUM chip. All these findings demonstrate that the
two-layer CNNs have a real potential for a range of applica-
tions.
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