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SUMMARY In this study, a modeling method of the intermittency
chaos using the Markov chain is proposed. The performances of the in-
termittency chaos and the Markov chain model are investigated when they
are injected to the Hopfield Neural Network for a quadratic assignment
problem or an associative memory. Computer simulated results show that
the proposed modeling is good enough to gain similar performance of the
intermittency chaos.
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1. Introduction

Intermittency chaos [1] is deeply related to the edge of chaos
[2] and many researchers suggest that such a behavior be-
tween order and chaos gains better performance for various
kinds of information processing than fully developed chaos.
One good example of this is an application of chaos to the
Hopfield Neural Networks (Hopfield NN) [3] solving com-
binatorial optimization problems to avoid trappings of the
solutions into a local minimum. Hayakawa et al. pointed
out the chaos near the three-periodic window of the logistic
map gains the best performance for solving traveling sales-
man problems (TSP) [4]. However, the reason why the in-
termittency chaos exhibits such a good performance has not
been clarified. Therefore, it is very important to make sim-
pler models of the good characteristics of the intermittency
chaos and to investigate their detailed properties.

In this study, we propose a modeling method of the in-
termittency chaos obtained from the logistic map by using
the Markov chain. Various people have already proposed
the Markov chain modelings of chaotic systems [5]-[7].
The modelings have been successfully applied to the chaos-
based spread spectrum communication systems for the pur-
poses of the noise cleaning of chaotic sequences [5] and the
analytical estimation of the performance [6]. Further, the
modeling has been extended to generate more complex non-
linear phenomena such as self-similarity [7]. These mod-
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elings are effective in the sense that the models could gen-
erate almost all the phenomena observed from the original
chaotic system. However, it is not appropriate to reveal the
reasons of the good performance of the intermittency chaos.
Therefore, in this study, we pay our attentions only on the
distribution of the lengths of the laminar parts and the burst
parts, which seems to be the most distinguished feature of
the intermittency chaos. The proposed modeling using the
Markov chain is completely different from those in the ref-
erences on the point that each state in the Markov chain is
not a quantized value (or an interval) of a variable but a be-
havior of successive orbits. As a result, the model becomes
very simple and enhances the feature of the intermittency
chaos.

In order to confirm that the proposed model keeps the
good property of the intermittency chaos, we investigate the
performances of the intermittency chaos and the Markov
chain model when they are injected to the Hopfield NN
for a quadratic assignment problem (QAP) or an associative
memory, which are known as representative applications of
the Hopfield NN. Computer simulated results show that the
proposed modeling is good enough to gain similar perfor-
mance of the intermittency chaos.

2. Intermittency Chaos

We consider the logistic map to generate chaotic time series;
2+ 1) = a2 - 2(). (1)

Varying the control parameter «, Eq. (1) behaves chaotically
via a period-doubling cascade. Further, it is well known that
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the map produces intermittent bursts just before periodic-
windows appear. Figure 1 shows an example of the inter-
mittency chaos near the three-periodic window. As we can
see from the figure, the chaotic time series could be divided
into two phases; laminar part of periodic behavior with pe-
riod 3 and burst part of spread points over the invariant inter-
val. As increasing a, the ratio of the laminar parts becomes
larger and finally the three-periodic window appears.

3. Markov Chain Modeling

In this section, we model the intermittency chaos by using
the Markov chain.

At first, we distinguish the laminar part and the burst
part of the intermittency chaos. Because we treat only the
intermittency chaos near the three-periodic window, we re-
gard three successive sequences starting from a point whose
value is 0.9444 or more as one-period of the laminar part.
Other points are regarded as the burst part.

In order to make the Markov chain model precisely, we
counted the period of the laminar parts. The frequency of
each period of the laminar part during 100000 iterations of
the logistic map is shown in Fig. 2. We can see that the curve
does not obey any simple scaling rules. Namely, the period
of the laminar part is bounded and the maximum value of
the period takes a peak. The intermittency chaos occurs just
before a tangent bifurcation. The movement of the laminar
part of the intermittency chaos is shown in Fig.4 of [1]. If
the control parameter of a given map is fixed, the width of
the channel between the map and the bisector is decided.
Since the width is finite, the number of the iteration to pass
through the channel is bounded. We consider that this is the
most distinguished feature of the intermittency chaos.

In order to model the above-mentioned feature of the
intermittency chaos, we propose the Markov chain as shown
in Fig. 3. In this Markov chain, the state S corresponds to
the burst part and the states S, S, - - -, § 1 correspond to the
laminar parts where the subscript k of S indicates the period
of the continuing laminar part and L is the maximum period
of the laminar part. In the state S, three points whose val-
ues are uniformly spread over the interval [0.160, 0.956] are
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Fig.2  Distribution of period of laminar part (Intermittency chaos for
a=3.827940).
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generated. In the state S (k # 0), three successive points
{0.956, 0.160, 0.514} corresponding to the three-periodic
points of the logistic map are generated. The conditional
probabilities P(Sk|S ;) means the transition probability from
the state §; to the state Sy, and

P(SikalSi) + P(SolS) =1 (0<k <L) 2

must be satisfied.

If we denote the stationary probability for the state S
as Q(Sy), the transition probabilities satisfy the following
equations.

L-1
O(S0) = )" P(SolSNQS 1) + (S 1) 3)
=0
OSK) = PSKSk-)0S k1) (0<k<L) “)
L
D060 =1. 5)
k=0

We derive the stationary probabilities of the Markov
chain from the simulated data of the intermittency chaos by
counting the number of the corresponding state. Further,
the transition probabilities are calculated from the stationary
probabilities by using Egs. (3) and (4).

Figure 4 shows an example of time series obtained
from the Markov chain model for L = 15. The transitions
between the states are decided by using a random function
according to the obtained transition probablities and the val-
ues in the burst parts are also given by using a random func-
tion. In order to check the statistical property of the obtained

P(Si1So) P(S21S1) P(Sz|S2)____ P(SLISL1)
P(SolSo)
sofolor:
P(SolS2)

Fig.3  Markov chain.
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Fig.5 Distribution of period of laminar part (Markov chain model for
L =15).

Table 1  Statistical properties of intermittency chaos and Markov chain
model.
Ratio of laminar part Average period of lam-
inar part
[ L ]| Chaos | Markov || Chaos | Markov ||

7 0.4215 0.4156 3.1495 3.0789

9 0.4714 0.4580 3.8271 3.7139

11 0.5049 0.5049 4.3486 4.2729

13 0.5348 0.5289 4.9732 4.9216

15 0.5558 0.5524 5.4389 5.2984

17 0.5798 0.5700 5.9185 5.7266

19 0.5905 0.6083 6.5688 6.5358

21 0.6251 0.6313 7.0888 7.1835

23 0.6422 0.6424 7.4430 7.3444

25 0.6445 0.6427 7.4853 7.4764

30 0.6878 0.6804 9.2968 8.8704

40 0.7261 0.7196 11.5463 11.1663

50 0.7655 0.7580 13.6257 12.8656

70 0.8240 0.8167 19.7186 19.2385
100 | 0.8563 0.8532 24.8647 24.4863

time series, we counted the period of the laminar part. The
result is shown in Fig. 5. We can say that the result is very
close to that in Fig. 2.

Further, we produce the Markov chain models for vari-
ous sizes of the maximum period L of the laminar part. The
comparison of the statistical properties of the original inter-
mittency chaos and the corresponding Markov chain model
is summarized in Table 1. We can confirm that the property
of the Markov chain models is similar to that of the original
intermittency chaos.

4. Application to Hopfield NN for QAP

In this section, as the first example of applications of the
Markov chain model of the intermittency chaos, we investi-
gate the performance of the Hopfield NN for a QAP when
the intermittency chaos and the Markov chain model are in-
jected to the network in order to avoid the local minimum
trapping problem.
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4.1 Solving QAP with Hopfield NN

A QAP is expressed as follow: given two matrices, distance
matrix C and flow matrix D, and find the permutation p
which corresponds to the minimum value of the objective
function f(p) in Eq. (6).

F® = > CiDyiny (©)

i=1 j=1

where C;; and D;; are the (i, j)-th elements of C and D, re-
spectively, p(i) is the i-th element of vector p, and N is the
size of the problem. There are many real applications which
are formulated by Eq. (6).

Because QAP is very difficult, it is almost impossible to
solve the optimum solutions in larger problems. The largest
problem which is solved by deterministic methods may be
only 20 in recent study. Further, computation time is very
long to obtain the exact optimum solutions. Therefore, it is
usual to develop heuristic methods which search nearly op-
timal solutions in reasonable time. For solving Ny-element
QAP by the Hopfield NN, Ny X Ny neurons are required
and the following energy function is defined to fire (i, j)-th
neuron at the optimal position:

1 NQ NQ NQ
EQ = _E Z Wim; jnXimX jn + Z O Xim- @)
im=1 jn=1 im=1

The neurons are coupled each other with the synaptic con-
nection weight. Suppose that the weight between (i, m)-th
neuron and (j, n)-th neuron and the threshold of the (i, m)-th
neuron are described by:

Ciijn
Wim;jn = -2 JA( - 6n1n)6ij + By (1 — 6i_j) + —

O = —(A + B) ®)

where A and B are positive constants, and ¢;; is Kronecker’s
delta. The states of the Ny X Ny neurons are asynchronously
updated due to the following difference equation:

No
xim(t + 1) = Q[Z wim;jnxjn(t) + gim +,8inm(t)] (9)

Jn=1

where g(+) is a sigmoidal function

1
1 +exp (— f)
€
Zim(?) s the intermittency chaos or the Markov chain model,
and S limits the amplitude of the injected time series. Note
that we normalize Z;,, by Eq. (11) before the injection.
Aim 1) -2
it + 1) = D an
Z

where 7 is the average of (), and o, is the standard devia-
tion of 2(¢).

Further, we use the method suggested by Sato et al. (1.1
in [8]) to decide firing of neurons.

g(x) = (10)
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4.2 Simulated Results for QAP

The problem used here is chosen from the site QAPLIB
which collects the bench mark problems [9]. We carried out
computer simulations for the problems with various sizes.
The results for “Nugl2” are shown in this section. The
global minimum of this problem is known as 578. The pa-
rameters of the Hopfield NN are fixed as A = 1.0, B = 1.0,
g = 100 and & = 0.02 and the amplitude of the injected
time series is fixed as 8o = 0.6. The number of updating the
network N;; is 10000.

In order to evaluate the performance precisely, we ne-
glect the once-appeared-solutions and use the two functions
Depth_1 and Depth_2 proposed in our previous study [10].
Both functions have been introduced to evaluate finding a lot
of nearly optimal solutions. The difference between them is
the treatment of bad solutions. The function Depth_1 eval-
uates all obtained solutions as good factor, even if the en-
ergies of the solutions are much worse than the optimal en-
ergy. The concept of this function is based on the idea that
the network which finds a lot of bad solutions is better than
the network does not find any solutions at all. On the other
hand, Depth_2 evaluates bad solutions as bad factor. In or-
der to eliminate the effect of bad solutions, we not only set
up a threshold but give a penalty according to the energy.
The concept of this function is based on the idea that finding
a lot of bad solutions hinders finding good solutions.

4.2.1 Depth_1

The first function Depth_1 is defined as

n

Depth1 = " {f(px) = Deo)? (12)

k=0

where D, is a constant which is large enough to include
the energies of all solutions, n is the number of the accepted
solutions and the energy f(py) is calculated by Eq. (6) using
the permutation p; corresponding to the k-th solution.

The calculated result of Depth_1 is shown in Fig. 6.
The horizontal axis is the maximum period of the laminar
part L. We confirm that both the intermittency chaos and
the Markov chain model exhibit similar tendency such that
Depth_1 decreases as the maximum period L of the laminar
part increases. However, the Depth_1 for the Markov chain
model is not as large as those for the intermittency chaos.

4.2.2 Depth2

The function Depth_2 is defined as follows:

n

Depth2 = ) {(f(®B) = Dul’ = ) f(B0) = Dur)’

kek, kek,
where Kk, = {k | f(px) < Din}. (13)

The calculated result of Depth_2 is shown in Fig.7.
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The Markov chain model gains similar performance to the
intermittency chaos. This result shows that the Markov
chain model keeps the good characteristic of the intermit-
tency chaos to find a lot of nearly optimal solutions of QAP.

5. Application to Hopfield NN for Associative Memory

In this section, as the second example, we investigate the
convergence performance of the Hopfield NN working as
an associative memory when the intermittency chaos and
the Markov chain model are injected to the network as a
noise. Similarly to the case of QAP, we have shown that the
injection of the intermittency chaos to the Hopfield NN for
an associative memory could avoid the local minimum trap-
ping problem and could improve the rate and the speed of
the convergence to a stored pattern [11].

5.1 Hopfield NN Working as Associative Memory

Associative memory is a system which returns a stored pat-
tern that is similar to a presented pattern. Noisy patterns
can be corrected or distorted patterns can be recognized by
a well-constructed associative memory.

The Hopfield NN is used as an associative memory by
exploiting the property that the network has multiple stable
states. Namely, if the parameters of the network can be de-
cided in such a way that the patterns to be stored become
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stable states of the network, the network produces a stored
pattern that is similar to an input pattern.

The energy function of the Hopfield NN with N4 neu-
rons and M stored binary patterns is defined by the following
equation.

5

NI'—*

i WX — Zex, (14)
i=1

where w;; is the weight between i-th neuron and j-th neuron,
and 6; is the threshold of the i-th neuron. They are given as
follows.

~.
Il
—_

M
Qxpi = D2xpj = 1) @ #))

wij = ,; ! (15)
0 @@=

6; = 0. (16)

The states of the neurons are asynchronously updated
due to the following difference equation:

Ny
x(t+1)= g Z wi_ix_i(t) +6; +,8AZi (17

J=1

where g(-) is a sigmoidal function, z; is the intermittency
chaos or the Markov chain model, and 4 limits the ampli-
tude of the injected time series.

In this application, firing of neurons is decided by the
output value of more than 0.5.

5.2 Simulated Results for Associative Memory

In the computer simulations, we consider the Hopfield NN
with 400 neurons. In order to investigate the performance of
the network under difficult conditions, we prepare an input
binary pattern at random and produce several binary patterns
to be stored whose distances from the input pattern are the
exactly same. The Hamming distance dj is used to evaluate
the convergence of the network. Namely, the convergence
time T,y 18 defined as the iteration number of the network
when the Hamming distance between the output of the net-
work and one of the stored patterns becomes zero. Further,
we propose S .., to evaluate convergence speed more pre-
cisely. S cony 1s defined by Eq. (18).

SCO”U — 1 _ mln[ TCO}'IU? Nmax] (18)

N max

where N, is the given upper limit of the iteration number
of the simulation. Namely, if the network dose not converge
to any stored patterns during the given iteration, the value of
S conv 1S Ze€ro.

Computer simulations are carried out for various con-
ditions. Typical results for two cases of 5 stored patterns and
8 stored patterns are shown in Fig. 8. For this simulation, the
intermittency chaos for @ = 3.827940 and the corresponding
Markov chain model with L = 15 are injected. The ampli-
tude of the injected time series is 84 = 50.0, the parameter
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Fig.8 Simulated results of S -

of the Hopfield NN is & = 0.02, and the maximum itera-
tion number of the network is fixed as N,,,, = 10000. The
horizontal axis is the Hamming distance between the input
pattern and the stored patterns and the vertical axis is the
average value of S, in 100 trials.

The Markov chain model gains similar performance to
the intermittency chaos. This result shows that the Markov
chain model keeps the good property of the intermittency
chaos, which can improve the rate and the speed of the con-
vergence of the Hopfield NN as an associative memory.

6. Conclusions

In this study, a modeling method of the intermittency chaos
using the Markov chain has been proposed. The perfor-
mances of the intermittency chaos and the Markov chain
model were investigated when they were injected to the
Hopfield NN for a QAP or an associative memory. Com-
puter simulated results showed that the proposed modeling
was good enough to gain similar performance of the inter-
mittency chaos.
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