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Analysis of Phase-Inversion Waves in Coupled Oscillators

Synchronizing at In-and-Anti-Phase
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SUMMARY Recently, we have discovered wave propagation
phenomena which are continuously existing waves of changing
phase states between two adjacent oscillators from in-phase to
anti-phase or from anti-phase to in-phase in van der Pol oscilla-
tors coupled by inductors as a ladder. We named the phenomena
as “phase-inversion waves.” In this study, phase-inversion waves
which exist in the state of in-and-anti-phase synchronization have
been found. We observe the phenomena by circuit experiments
and computer calculations, and investigate them.
key words: coupled oscillators, phase difference, phase-
inversion waves, in-and-anti-phase synchronization

1. Introduction

Many studies on synchronization phenomena of coupled
oscillators have been carried out up to now in various
fields, physics [1]–[3], biology [4], electrical engineering
[5]–[14], and so on. Endo et al. have reported details
of theoretical analysis and circuit experiments about
some coupled oscillators as a ladder, a ring and a two-
dimensional array [6]–[8].

Recently, the authors have discovered a wave prop-
agation phenomena that phase states between adjacent
oscillators change from in-phase to anti-phase or from
anti-phase to in-phase in oscillators coupled by induc-
tors as a ladder [11]. We named the phenomena as
“phase-inversion waves.” It is very important to ana-
lyze the phase-inversion waves and to clarify the mech-
anism of the generation, because it is similar to propa-
gation phenomena of electrical information in an axial
fiber of nervous system. In [11], we explained the mech-
anism of the generation of the phase-inversion waves by
using the relationship between phase states and instan-
taneous oscillation frequencies. Further, we confirmed
that the phenomena could be explained by a simplified
mathematical model [12].

In this study, we investigate the phase-inversion
waves observed from the same van der Pol oscilla-
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tors ladder but in different synchronization mode; in-
and-anti phase synchronization, which is similar to the
phenomenon reported in [10]. In this synchronization
mode, in-phase and anti-phase synchronizations exist
alternately. An interesting point of this synchronization
is that the edge oscillators and their adjacent oscilla-
tors must be synchronized at anti-phase. This causes
various limitations of the generated phenomena with re-
spect to the phase-inversion waves. For example, in the
past studies, only even numbers of the phase-inversion
waves can exist and the number of the oscillators do not
affect the observed phenomena. On the other hand, in
this study, even numbers of the phase-inversion waves
exist in even numbers of the oscillators and odd num-
bers of the phase-inversion waves exist in odd numbers
of the oscillators. The reason of this difference is ex-
plained in Sect. 4. Further, the mechanisms of propaga-
tion, reflection at an edge of the array and reflection by
collision of two phase-inversion waves are different from
those reported in [11]. They are explained by using a
relationship between phase states and instantaneous os-
cillation frequencies in Sect. 5. The computer simulated
results are confirmed by circuit experiments.

2. Circuit Model

The circuit model used in this study is shown in Fig. 1.
N van der Pol oscillators are coupled by inductors L0.
We carried out computer calculations for the cases of
N = 9 and 20. Further, we carried out circuit exper-
iments for the case of N = 9. In the computer calcu-

Fig. 1 Coupled van der Pol oscillators as a ladder.
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lations, we assume the v − i characteristics of the non-
linear negative resistors in the circuit by the following
function.

ir(vk) = −g1vk + g3v
3
k (g1, g3 > 0). (1)

The circuit equations governing the circuit in Fig. 1 are
written as

[First Oscillator]

ẋ1 = y1 (2)

ẏ1 = −x1 + α(x2 − x1) + ε

(
y1 −

1
3
y31

)

[Middle Oscillators]

ẋk = yk (3)

ẏk =−xk + α(xk+1 − 2xk + xk−1) + ε

(
yk − 1

3
y3k

)
(k = 2 ∼ N−1)

[Last Oscillator]

ẋN = yN (4)

ẏN = −xN + α(xN−1 − xN ) + ε

(
yN − 1

3
y3N

)
,

where

t =
√

L1Cτ, iL1k =

√
Cg1
3L1g3

xk, vk =
√

g1
3g3

yk,

α =
L1

L0
, ε = g1

√
L1

C
,

d

dτ
= “ · ”. (5)

It should be noted that α corresponds to the coupling
of the oscillators and ε corresponds to the nonlinear-
ity of the oscillators. Throughout the paper, we fix
α = 0.10 and ε = 0.30 and calculate (2)–(4) by using
the fourth-order Runge-Kutta method with the stepsize
∆τ = 0.01.

3. Example of Phase-Inversion Waves

Figure 2 shows some typical examples of phase-
inversion waves reported previously. They are com-
puter calculated results from the circuit with the sizes
of N = 29 and 30. In the figures, the vertical axes are
the sum of the voltages of adjacent oscillators and the
horizontal axis is time. White regions in the diagram
correspond to the states that the sum of the voltages
is close to zero, namely the adjacent two oscillators are
synchronized at anti-phase. While, black regions cor-
respond to the states that the sum of the voltages has
large amplitude. We can see that the adjacent two os-
cillators are synchronized at in-phase in the black re-
gions from Fig. 3, which shows the same phenomenon
as Fig. 2(b), but the vertical axes are the difference be-
tween the voltages of adjacent oscillators. Namely, we

(a) Double waves (N = 29).

(b) Double waves (N = 30).

(c) Extinction by collision of waves (N = 30).

(d) Reflection by collision of two waves (N = 30).

(e) Decuple waves (N = 30).

Fig. 2 Examples of phase-inversion waves. yk + yk+1 vs. time
(k = 1 ∼ N − 1). α = 0.10, ε = 0.30 and ∆τ = 0.01.
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Double waves (N = 30).

Fig. 3 Examples of phase-inversion waves. yk − yk+1 vs. time
(k = 1 ∼ N − 1). α = 0.10, ε = 0.30 and ∆τ = 0.01.

can say that the phase-inversion waves in Fig. 2 propa-
gate in the state of in-phase synchronization.

Remark A:
Strictly speaking, when the phase-inversion waves prop-
agate, the whole circuits are not synchronized. How-
ever, because the concept of synchronization is useful
to explain the phenomena, the phase-inversion waves
are described such as they propagate in a synchroniza-
tion state.

In Figs. 2 and 3, we can see the wave propagation,
reflection and extinction. Even numbers of the phase-
inversion waves exist in both odd and even numbers of
coupled oscillators.

It has been known that two van der Pol oscillators
coupled by an inductor have two stable phase states,
namely in-phase synchronization and anti-phase syn-
chronization. Further, the oscillation frequency for the
in-phase synchronization is smaller than the oscillation
frequency for the anti-phase synchronization. By using
these features, we could explain the mechanism of the
phenomena in Fig. 2 by using the relationship between
phase states and instantaneous oscillation frequencies
(See [11] for the details).

4. Phase-Inversion Waves in the State of In-
and-Anti-Phase Synchronization

4.1 In-and-Anti-Phase Synchronization

In the circuit model, we can observe another type of
synchronization as shown in Fig. 4. The vertical axes
are the amplitudes of the voltages and the horizontal
axis is time. We name this synchronization state as
“in-and-anti-phase synchronization” because in-phase
and anti-phase exist alternately. Also, in this synchro-
nization state, the edge oscillators and their adjacent
oscillators can not be synchronized at in-phase. Hence,
this synchronization state can be observed only when
N is an even number. The oscillation frequency for
the in-and-anti-phase synchronization fmid is almost
the average of the oscillation frequency for the in-phase
synchronization flow and the oscillation frequency for

(a) (b)

Fig. 4 Example of in-and-anti-phase synchronization. (a) Cir-
cuit experimental result for L0=1170mH, L1=200mH, C=68nF
and r=1kΩ. (b) Computer calculated result for α = 0.10,
ε = 0.30 and ∆τ = 0.01.

(a) No wave (N = 6).

(b) Single wave (N = 9).

(c) Double waves (N = 8).

Fig. 5 Experimental results. Circuit experiments: L0 =
1170mH, L1 = 200mH, C = 68nF and r=1kΩ. Computer cal-
culations: α = 0.10, ε = 0.30 and ∆τ = 0.01.

the anti-phase synchronization fhigh.

4.2 Phase-Inversion Waves

Figures 5 and 6 show examples of phase-inversion waves
in the state of in-and-anti-phase synchronization. The
vertical axes of Figs. 5 and 6 are the sum of the voltages
of adjacent oscillators and the horizontal axis is time.
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(a) Single wave (N = 29).

(b) Triple waves (N = 29).

(c) Double waves (N = 30).

(d) Double waves (N = 30).

(e) Quadruple waves (N = 30).

Fig. 6 Examples of phase-inversion waves. α = 0.10, ε = 0.30
and ∆τ = 0.01.

Figure 5 shows circuit experimental results and the
corresponding computer calculated results obtained for
the cases of N ≤ 9. In Fig. 5(a), phase-inversion waves
do not exist. A phase-inversion-wave exists continu-
ously in Fig. 5(b). We can see that the change of the
phase states from in-phase to anti-phase or from anti-
phase to in-phase propagates. In Fig. 5(c), a pair of
phase-inversion-waves exist.

Figure 6 shows computer calculated results ob-
tained for the cases of N = 29 and 30. We can observe
phase-inversion waves similar to Fig. 5.

In in-and-anti-phase synchronization, we could not
observe wave extinction by collision of two waves like
Fig. 2(c).

4.3 Single Phase-Inversion Wave

In this subsection, We clarify the relationship between
the number of oscillators and the number of phase-
inversion waves.
<in In-Phase Synchronization>

In the state of the in-phase synchronization, the
edge oscillators and their adjacent oscillators must be
synchronized at in-phase. Therefore, in spite of the
number of the oscillators in the array, only even num-
bers of phase-inversion waves can exist [11],

<in In-and-Anti-Phase Synchronization>
In the state of the in-and-anti-phase synchroniz-

ing, the edge oscillators and their adjacent oscillators
must be synchronized at anti-phase. Therefore, when
an even number of oscillators are coupled, even num-
bers of phase-inversion waves can exist, while when an
odd number of oscillators are coupled, odd numbers of
phase-inversion waves can exist.

Remark B:
As explained in Sect. 4.1, the in-and-anti-phase syn-
chronization is not stable in the array of odd numbers
of oscillators. However, when odd numbers of phase-
inversion waves exist in the array, the in-and-anti-phase
synchronization can be observed. Furthermore, for the
first time, odd numbers of phase-inversion waves in-
cluding the single wave are observed.

5. Mechanisms of Phase-Inversion Waves

Figures 7, 8 and 9 show phase differences and instan-
taneous frequencies, where Φk,k+1 is phase difference
between OSCk and OSCk+1 and fk is instantaneous
frequency of OSCk. We define them as follows:

Φk,k+1 =
τk(n)− τk+1(n)

τk(n)− τk(n − 1)
× π (6)

fk(n) =
1

2(τk(n)− τk(n − 1))
(7)

where τk(n) is time when the voltage of OSCk crosses
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(a) Phase difference.

(b) Instantaneous frequency.

Fig. 7 Mechanism of propagation (computer calculated
results).

(a) Phase difference.

(b) Instantaneous frequency.

Fig. 8 Mechanism of reflection at an edge of the array
(computer calculated results).

(a) Phase difference.

(b) Instantaneous frequency.

Fig. 9 Mechanism of reflection by collision of two waves (com-
puter calculated results).

0 [V] at n-th time. It has been known that f changes as
Φ changes. We explain the mechanisms of the phase-
inversion waves by using the relationship between f and
Φ.

5.1 Mechanism of Propagation

Figure 7 shows propagating single phase-inversion
wave. The mechanism of the wave propagation can be
explained in Table 1.

After the wave reflects at an edge of the array,
when the propagating wave reaches OSC4 from the di-
rection of OSCN , phase states and instantaneous fre-
quencies change in a similar manner (see 8© in Fig. 7(a)
and (b)).

5.2 Mechanism of Reflection at an Edge

Figure 8 shows reflecting single phase-inversion wave at
an edge of the array. The mechanism of the reflection
at an edge of the array can be explained in Table 2.

5.3 Mechanism of Reflection by Collision

Figure 9 shows reflection by collision of two phase-
inversion waves in the middle of the array. When the
two phase-inversion waves reach two adjacent oscilla-
tors at the same time, the phase-inversion waves reflect.
The mechanism of the wave reflection can be explained
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Table 1 Mechanism of propagation.

time [τ ] sequence of propagation

Let us assume that the circuit synchronizes at in-and-anti-
phase and that single wave reaches OSC6 from the direction
of OSCN .

around 24
f6 changes from fmid toward fhigh, because the
phase state between OSC6 and OSC7 changes
from in-phase to anti-phase (see 1© in Fig. 7(b)).

around 27

The phase state of OSC6 advances, because f6

changes from fmid toward fhigh. Hence, Φ5,6

starts to change from −π to 0 (see Eq. (6) and
2© in Fig. 7(a)).

around 32
f5 starts to change from fmid toward flow (see
3© in Fig. 7(b)).

around 36 Φ4,5 changes from 0 to −π (see 4© in Fig. 7(a)).

around 62

f6 changes to fmid again before f6 reaches fhigh,
because the phase states between OSC5 and
OSC6 and between OSC6 and OSC7 start to in-
terchange. (see 5© in Fig. 7(b)).

around 79

f5 changes to fmid again before f5 reaches flow

because the phase states between OSC5 and
OSC6 and between OSC6 and OSC7 start to in-
terchange (see 6© in Fig. 7(b)).

around 114

f5 becomes to fmid when the phase states be-
tween OSC4 and OSC5 and between OSC5 and
OSC6 finish to interchange (see 7© in Fig. 7(a)
and (b)).

in Table 3.

5.4 Extinction by Collision

We could observe extinction of the phase-inversion
waves by collision in the past study [11] (see Fig. 2(c)).
However, such an extinction can not be observed in this
study. The reason would be explained as follows. In the
past study, when two phase-inversion waves reach an
oscillator at the same time, the phase-inversion waves
disappeare. Because the instantaneous frequency of the
oscillator changes from flow to fhigh or fhigh to flow.
However, in this study, the instantaneous frequency of
the oscillator can not change as the past study, because
the changing directions of the instantaneous frequency
are different between the two sides of the oscillator, for
example, from fmid to fhigh at the right side and from
fmid to flow at the left side. Therefore, we can not

Table 2 Mechanism of reflection at an edge.

time [τ ] sequence of reflection at an edge

Let us assume that the circuit synchronizes at in-and-anti-
phase and that single wave reaches OSC3 from the direction
of OSCN . The phase state between OSC1 and OSC2 must be
anti-phase and the phase state between OSC2 and OSC3 must
be in-phase (see Sect. 4.1).

around 80

f2 starts to change from fmid toward fhigh, be-
cause the phase state between OSC2 and OSC3

changes from in-phase to anti-phase (see 1© in
Figs. 8(a) and (b)).

around 84
Φ1,2 starts to change from −π to 0 (see 2© in
Fig. 8(b)).

around 89
f1 starts to degrease toward flow (see 3© in
Fig. 8(a)).

around 122

f2 starts to decrease to fmid again before f2

reaches fhigh, because the phase states between
OSC1 and OSC2 and between OSC2 and OSC3

start to interchange (see 4© in Fig. 8(b)).

around 148

When Φ1,2 reaches 0, f1 reaches flow and f2

reaches fmid. However, the in-phase synchro-
nization of OSC1 and OSC2 is not stable, be-
cause f1 is not equal to f2. Φ1,2 changes to
π, because f1 is smaller than f2. Further, f1

and f2 start to increase toward fhigh (see 5© in
Figs. 8(a) and (b)).

around 154
Φ2,3 starts to change to −2π, because f2 is larger
than f3 (see 6© in Fig. 8(a)).

around 160 f3 changes toward flow. (see 7© in Fig. 8(b)).

around 170

f2 changes to fmid again before f2 reaches fhigh,
because the phase states between OSC1 and
OSC2 and between OSC2 and OSC3 start to in-
terchange (see 8© in Fig. 8(b)).

around 200
When Φ1,2 reaches π, f1 and f2 reaches fmid

again (see 9© in Figs. 8(a) and (b)).

observe extinction by collision.

6. Conclusions

In this study, we observed phase-inversion waves in a
ladder of coupled oscillators synchronizing at in-and-
anti-phase by both circuit experiments and computer
calculations.

In the previous study, wave propagation, reflection
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Table 3 Mechanism of reflection by collision.

time [τ ] sequence of reflection by collision

Let us assume that the circuit synchronizes at in-and-anti-
phase and that two phase-inversion waves are going to reach
OSC13 and OSC16 at the same time from the direction of
OSC1 and OSCN , respectively. The phase states between
OSC13 and OSC14 and between OSC15 and OSC16 must be
anti-phase and the phase state between OSC14 and OSC15

must be in-phase (see Sect. 4.1).

around 51

f14 and f15 start to change from fmid toward
flow, because Φ13,14 changes from −π to −2π.
Φ15,16 changes from −π to 0 (see 1© in Fig. 8(b)).

around 60
Φ14,15 does not change, because f14 and f15

start to change toward flow at the same time
(see 2© in Fig. 8(a)).

around 78

f13 and f16 start to decrease to fmid again be-
fore they reach fhigh, because the phase states
between OSC12 and OSC13 and between OSC13

and OSC14 start to interchange and the phase
states between OSC15 and OSC16 and between
OSC16 and OSC17 also start to interchange (see
3© in Fig. 8(b)).

around 103

When Φ13,14 and Φ15,16 reach −2π and 0, f14

and f15 reach flow. However, because f13 and
f16 are fmid, Φ13,14 and Φ15,16 change to −3π
and π. Therefore f13 and f16 change from fmid

toward fhigh, and f14 and f15 change from flow

to fmid (see 4© in Figs. 8(a) and (b)).

around 300
When Φ13,14 and Φ15,16 reach −3π and π, f13 ∼
f16 reach fmid.

at an edge of the array, reflection by collision of two
waves and extinction by collision of two waves could
be observed. However, the extinction could not be ob-
served in the in-and-anti-phase synchronization. Fur-
ther, single phase-inversion wave could be observed for
the first time.

In the state of the in-and-anti-phase synchro-
nization, instantaneous oscillation frequencies change
around only single frequency fmid. We could explain
the mechanism of the wave propagation, the reflection
by collision of two waves and the reflection at an edge
of the array by using the relationship between phase
states and instantaneous frequencies.
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