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SUMMARY  Recently, we have discovered wave propagation
phenomena which are continuously existing waves of changing
phase states between two adjacent oscillators from in-phase to
anti-phase or from anti-phase to in-phase in van der Pol oscilla-
tors coupled by inductors as a ladder. We named the phenomena
as “phase-inversion waves.” In this study, phase-inversion waves
which exist in the state of in-and-anti-phase synchronization have
been found. We observe the phenomena by circuit experiments
and computer calculations, and investigate them.
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1. Introduction

Many studies on synchronization phenomena of coupled
oscillators have been carried out up to now in various
fields, physics [1]-[3], biology [4], electrical engineering
[5]-[14], and so on. Endo et al. have reported details
of theoretical analysis and circuit experiments about
some coupled oscillators as a ladder, a ring and a two-
dimensional array [6]-[8].

Recently, the authors have discovered a wave prop-
agation phenomena that phase states between adjacent
oscillators change from in-phase to anti-phase or from
anti-phase to in-phase in oscillators coupled by induc-
tors as a ladder [11]. We named the phenomena as
“phase-inversion waves.” It is very important to ana-
lyze the phase-inversion waves and to clarify the mech-
anism of the generation, because it is similar to propa-
gation phenomena of electrical information in an axial
fiber of nervous system. In [11], we explained the mech-
anism of the generation of the phase-inversion waves by
using the relationship between phase states and instan-
taneous oscillation frequencies. Further, we confirmed
that the phenomena could be explained by a simplified
mathematical model [12].

In this study, we investigate the phase-inversion
waves observed from the same van der Pol oscilla-
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tors ladder but in different synchronization mode; in-
and-anti phase synchronization, which is similar to the
phenomenon reported in [10]. In this synchronization
mode, in-phase and anti-phase synchronizations exist
alternately. An interesting point of this synchronization
is that the edge oscillators and their adjacent oscilla-
tors must be synchronized at anti-phase. This causes
various limitations of the generated phenomena with re-
spect to the phase-inversion waves. For example, in the
past studies, only even numbers of the phase-inversion
waves can exist and the number of the oscillators do not
affect the observed phenomena. On the other hand, in
this study, even numbers of the phase-inversion waves
exist in even numbers of the oscillators and odd num-
bers of the phase-inversion waves exist in odd numbers
of the oscillators. The reason of this difference is ex-
plained in Sect. 4. Further, the mechanisms of propaga-
tion, reflection at an edge of the array and reflection by
collision of two phase-inversion waves are different from
those reported in [11]. They are explained by using a
relationship between phase states and instantaneous os-
cillation frequencies in Sect. 5. The computer simulated
results are confirmed by circuit experiments.

2. Circuit Model

The circuit model used in this study is shown in Fig. 1.
N van der Pol oscillators are coupled by inductors L.
We carried out computer calculations for the cases of
N =9 and 20. Further, we carried out circuit exper-
iments for the case of N = 9. In the computer calcu-
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Fig.1 Coupled van der Pol oscillators as a ladder.
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lations, we assume the v — i characteristics of the non-
linear negative resistors in the circuit by the following
function.

(91,93 > 0). (1)

The circuit equations governing the circuit in Fig. 1 are
written as

ir(V) = —g10k + g3V},

[First Oscillator]

T =1y (2)
. L3
i =-—z1 oz —a1) +e Y1 - 3%
[Middle Oscillators]
T = Yk (3)

. 1
Uk =—f + (Tpy1 — 27 + Tp_1) + | yp — gyi’

(k=2~ N-1)
[Last Oscillator]
IN = YN (4)
. 1 4
ynv = —rn +a(rn_1 —aN) te | yn — 3YN |
where

\V LlCT, ’ile

Tp, Vk Yk
3L1gs3
Ll L1 d
1 _ =1 “ 5
o LO’ € g1 C ) dr ( )

It should be noted that a corresponds to the coupling
of the oscillators and ¢ corresponds to the nonlinear-
ity of the oscillators. Throughout the paper, we fix

0.10 and € = 0.30 and calculate (2)—(4) by using
the fourth-order Runge-Kutta method with the stepsize
A1 =0.01.

3. Example of Phase-Inversion Waves

Figure 2 shows some typical examples of phase-
inversion waves reported previously. They are com-
puter calculated results from the circuit with the sizes
of N =29 and 30. In the figures, the vertical axes are
the sum of the voltages of adjacent oscillators and the
horizontal axis is time. White regions in the diagram
correspond to the states that the sum of the voltages
is close to zero, namely the adjacent two oscillators are
synchronized at anti-phase. While, black regions cor-
respond to the states that the sum of the voltages has
large amplitude. We can see that the adjacent two os-
cillators are synchronized at in-phase in the black re-
gions from Fig. 3, which shows the same phenomenon
as Fig. 2(b), but the vertical axes are the difference be-
tween the voltages of adjacent oscillators. Namely, we
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(e) Decuple waves (N = 30).

Fig.2 Examples of phase-inversion waves. yj + yx+1 vs. time
(k=1~N—-1). «a=0.10, e = 0.30 and A7 = 0.01.
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> Timé 120 [t/ div]
Double waves (N = 30).

Fig.3 Examples of phase-inversion waves. y, — yr+1 vs. time
(k=1~N—-1). «a=0.10, e = 0.30 and A7 = 0.01.

can say that the phase-inversion waves in Fig. 2 propa-
gate in the state of in-phase synchronization.

Remark A:

Strictly speaking, when the phase-inversion waves prop-
agate, the whole circuits are not synchronized. How-
ever, because the concept of synchronization is useful
to explain the phenomena, the phase-inversion waves
are described such as they propagate in a synchroniza-
tion state.

In Figs. 2 and 3, we can see the wave propagation,
reflection and extinction. Even numbers of the phase-
inversion waves exist in both odd and even numbers of
coupled oscillators.

It has been known that two van der Pol oscillators
coupled by an inductor have two stable phase states,
namely in-phase synchronization and anti-phase syn-
chronization. Further, the oscillation frequency for the
in-phase synchronization is smaller than the oscillation
frequency for the anti-phase synchronization. By using
these features, we could explain the mechanism of the
phenomena in Fig. 2 by using the relationship between

phase states and instantaneous oscillation frequencies
(See [11] for the details).

4. Phase-Inversion Waves in the State of In-
and-Anti-Phase Synchronization

4.1 In-and-Anti-Phase Synchronization

In the circuit model, we can observe another type of
synchronization as shown in Fig.4. The vertical axes
are the amplitudes of the voltages and the horizontal
axis is time. We name this synchronization state as
“in-and-anti-phase synchronization” because in-phase
and anti-phase exist alternately. Also, in this synchro-
nization state, the edge oscillators and their adjacent
oscillators can not be synchronized at in-phase. Hence,
this synchronization state can be observed only when
N is an even number. The oscillation frequency for
the in-and-anti-phase synchronization f,;4 is almost
the average of the oscillation frequency for the in-phase
synchronization fj,,, and the oscillation frequency for
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Fig.4 Example of in-and-anti-phase synchronization. (a) Cir-

cuit experimental result for Lo=1170 mH, L1=200mH, C=68 nF
and r=1kQ. (b) Computer calculated result for a« = 0.10,
e =0.30 and A7 = 0.01.
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(b) Single wave (N = 9).
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Fig.5 Experimental results. Circuit experiments: Lo =
1170mH, L1 = 200mH, C = 68nF and r=1k). Computer cal-
culations: a = 0.10, € = 0.30 and A7 = 0.01.

the anti-phase synchronization fpgn.
4.2 Phase-Inversion Waves

Figures 5 and 6 show examples of phase-inversion waves
in the state of in-and-anti-phase synchronization. The
vertical axes of Figs. 5 and 6 are the sum of the voltages
of adjacent oscillators and the horizontal axis is time.
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Fig.6 Examples of phase-inversion waves. a = 0.10, ¢ = 0.30
and A7 = 0.01.
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Figure 5 shows circuit experimental results and the
corresponding computer calculated results obtained for
the cases of N < 9. In Fig. 5(a), phase-inversion waves
do not exist. A phase-inversion-wave exists continu-
ously in Fig.5(b). We can see that the change of the
phase states from in-phase to anti-phase or from anti-
phase to in-phase propagates. In Fig.5(c), a pair of
phase-inversion-waves exist.

Figure 6 shows computer calculated results ob-
tained for the cases of N = 29 and 30. We can observe
phase-inversion waves similar to Fig. 5.

In in-and-anti-phase synchronization, we could not
observe wave extinction by collision of two waves like

Fig. 2(c).
4.3 Single Phase-Inversion Wave

In this subsection, We clarify the relationship between
the number of oscillators and the number of phase-
inversion waves.
<in In-Phase Synchronization>

In the state of the in-phase synchronization, the
edge oscillators and their adjacent oscillators must be
synchronized at in-phase. Therefore, in spite of the
number of the oscillators in the array, only even num-
bers of phase-inversion waves can exist [11],

<in In-and-Anti-Phase Synchronization>

In the state of the in-and-anti-phase synchroniz-
ing, the edge oscillators and their adjacent oscillators
must be synchronized at anti-phase. Therefore, when
an even number of oscillators are coupled, even num-
bers of phase-inversion waves can exist, while when an
odd number of oscillators are coupled, odd numbers of
phase-inversion waves can exist.

Remark B:

As explained in Sect.4.1, the in-and-anti-phase syn-
chronization is not stable in the array of odd numbers
of oscillators. However, when odd numbers of phase-
inversion waves exist in the array, the in-and-anti-phase
synchronization can be observed. Furthermore, for the
first time, odd numbers of phase-inversion waves in-
cluding the single wave are observed.

5. Mechanisms of Phase-Inversion Waves

Figures 7, 8 and 9 show phase differences and instan-
taneous frequencies, where ®, 41 is phase difference
between OSCy and OSCpy; and fi is instantaneous
frequency of OSCy. We define them as follows:

_ () = Ten(n)
Pppr1 = 2 (n) = ma(n — 1) X (6)
fin) = : 7)

2(7k(n) — (n — 1))

where 71 (n) is time when the voltage of OSCj, crosses
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(computer calculated results).
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Fig.9 Mechanism of reflection by collision of two waves (com-
puter calculated results).

0[V] at n-th time. It has been known that f changes as
® changes. We explain the mechanisms of the phase-

inversion waves by using the relationship between f and
P,

5.1 Mechanism of Propagation

Figure 7 shows propagating single phase-inversion
wave. The mechanism of the wave propagation can be
explained in Table 1.

After the wave reflects at an edge of the array,
when the propagating wave reaches OSCy from the di-
rection of OSCy, phase states and instantaneous fre-
quencies change in a similar manner (see @ in Fig. 7(a)

and (b)).
5.2 Mechanism of Reflection at an Edge

Figure 8 shows reflecting single phase-inversion wave at
an edge of the array. The mechanism of the reflection
at an edge of the array can be explained in Table 2.

5.3 Mechanism of Reflection by Collision

Figure 9 shows reflection by collision of two phase-
inversion waves in the middle of the array. When the
two phase-inversion waves reach two adjacent oscilla-
tors at the same time, the phase-inversion waves reflect.
The mechanism of the wave reflection can be explained
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Table 1  Mechanism of propagation.
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Table 2  Mechanism of reflection at an edge.

time [7] sequence of propagation

time [7] sequence of reflection at an edge

Let us assume that the circuit synchronizes at in-and-anti-
phase and that single wave reaches OSCg from the direction
of OSCx.

fe changes from f,,;q toward fp;gn, because the
phase state between OSCg and OSCry changes
from in-phase to anti-phase (see D in Fig. 7(b)).

around 24

The phase state of OSCg advances, because fg
changes from f,,;q toward fr;gn. Hence, &5
starts to change from —m to 0 (see Eq. (6) and
@ in Fig. 7(a)).

around 27

f5 starts to change from fp,;q toward fis, (see
® in Fig. 7(b)).

around 32

around 36 | @45 changes from 0 to —7 (see @ in Fig. 7(a)).

fe changes to fi,;q4 again before fg reaches frign,
because the phase states between OSCs and
OSCg and between OSCg and OSCr start to in-
terchange. (see ® in Fig.7(b)).

around 62

f5 changes to f,.;q again before f5 reaches fio.
because the phase states between OSCs and
0OSCg and between OSCg and OSCr start to in-
terchange (see ® in Fig. 7(b)).

around 79

f5 becomes to f,,;q when the phase states be-
around 114 | tween OSC4 and OSCs and between OSCs and
OSCg finish to interchange (see @ in Fig. 7(a)
and (b)).

in Table 3.
5.4 Extinction by Collision

We could observe extinction of the phase-inversion
waves by collision in the past study [11] (see Fig. 2(c)).
However, such an extinction can not be observed in this
study. The reason would be explained as follows. In the
past study, when two phase-inversion waves reach an
oscillator at the same time, the phase-inversion waves
disappeare. Because the instantaneous frequency of the
oscillator changes from fiow to frigh O frigh t0 fiow-
However, in this study, the instantaneous frequency of
the oscillator can not change as the past study, because
the changing directions of the instantaneous frequency
are different between the two sides of the oscillator, for
example, from fi,;q to frign at the right side and from
fmid t0 fiow at the left side. Therefore, we can not

Let us assume that the circuit synchronizes at in-and-anti-
phase and that single wave reaches OSC3 from the direction
of OSCp. The phase state between OSC; and OSCs must be
anti-phase and the phase state between OSC2 and OSCs must
be in-phase (see Sect.4.1).

f2 starts to change from f,,;4 toward fp;gn, be-

around 80 | cause the phase state between OSC2 and OSC3s
changes from in-phase to anti-phase (see @ in
Figs. 8(a) and (b)).
P19 starts to change from —7 to 0 (see @ in
around 84 Fig. 8(b)).
f1 starts to degrease toward fio, (see @ in
around 89

Fig. 8(a)).

fo starts to decrease to fn;q again before fo
around 122 | reaches fp;qn, because the phase states between
OSC; and OSCs and between OSCgy and OSCs3
start to interchange (see @ in Fig. 8(b)).

When @1 > reaches 0, f1 reaches fi5, and fo
reaches f,,;q. However, the in-phase synchro-
nization of OSC; and OSCsy is not stable, be-

around 148 | ;g6 f1 is not equal to fa. @12 changes to
7, because fi is smaller than fo. Further, f;
and fa start to increase toward fpign (see ® in
Figs.8(a) and (b)).
®y 3 starts to change to —27, because f2 is larger
around 154 ’

than f3 (see ® in Fig.8(a)).

around 160 | f3 changes toward fio.. (see @ in Fig. 8(b)).

f2 changes to fy,;q again before fa reaches frign,
because the phase states between OSC; and
around 170 OSCs and between OSCs and OSCj3 start to in-
terchange (see ® in Fig. 8(b)).

When ®12 reaches w, f1 and fa reaches fiid

around 200 again (see @ in Figs. 8(a) and (b)).

observe extinction by collision.
6. Conclusions

In this study, we observed phase-inversion waves in a
ladder of coupled oscillators synchronizing at in-and-
anti-phase by both circuit experiments and computer
calculations.

In the previous study, wave propagation, reflection



YAMAUCHTI et al.: ANALYSIS OF PHASE-INVERSION WAVES IN COUPLED OSCILLATORS

Table 3 Mechanism of reflection by collision.
time [7] sequence of reflection by collision
Let us assume that the circuit synchronizes at in-and-anti-
phase and that two phase-inversion waves are going to reach
0OSCi13 and OSCig at the same time from the direction of
OSC; and OSCp, respectively. The phase states between
0OSCi3 and OSCy14 and between OSC15 and OSCig must be
anti-phase and the phase state between OSC14 and OSCjs
must be in-phase (see Sect.4.1).
f14 and f15 start to change from f,,;q toward
fiow, because 13,14 changes from —7 to —27.
around 51 ®15,16 changes from —m to 0 (see D in Fig. 8(b)).
®14,15 does not change, because fi14 and fi5
around 60 | start to change toward f;,,, at the same time
(see @ in Fig.8(a)).
fi13 and fie start to decrease to f,,;q again be-
fore they reach fp;gn, because the phase states
between OSC12 and OSC;3 and between OSC13
around 78 | and OSCy4 start to interchange and the phase
states between OSCi15 and OSCig and between
0OSCi6 and OSCq7 also start to interchange (see
@ in Fig.8(b)).
When ®13,14 and ®15,16 reach —27 and 0, f14
and f15 reach fj,,,. However, because fi3 and
f16 are friq, 13,14 and ®15,16 change to —3w
around 103 | apnqd 7. Therefore fi3 and fi change from f,:4
toward frign, and fi4 and f15 change from fio,
to fmid (see @ in Figs. 8(a) and (b)).
When ®13,14 and ®15,16 reach =37 and 7, f13 ~
around 300 f16 reach frid-

at an edge of the array, reflection by collision of two
waves and extinction by collision of two waves could
be observed. However, the extinction could not be ob-
served in the in-and-anti-phase synchronization. Fur-
ther, single phase-inversion wave could be observed for
the first time.

In the state of the in-and-anti-phase synchro-
nization, instantaneous oscillation frequencies change
around only single frequency finiq- We could explain
the mechanism of the wave propagation, the reflection
by collision of two waves and the reflection at an edge
of the array by using the relationship between phase
states and instantaneous frequencies.
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