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SUMMARY Cellular Neural Networks (CNNs) have been
developed as a high-speed parallel signal-processing platform. In
this paper, a generalized two-layer cellular neural network model
is proposed for image processing, in which two templates are
introduced between the two layers. We found from the simula-
tions that the two-layer CNNs efficiently behave compared to the
single-layer CNNs for the many applications of image processing.
For examples, simulation problems such as linearly non-separable
task—logic XOR, center point detection and object separation,
etc. can be efficiently solved with the two-layer CNNs. The sta-
bility problems of the two-layer CNNs with symmetric and/or
special coupling templates are also discussed based on the Lya-
punov function technique. Its equilibrium points are found from
the trajectories in a phase plane, whose results agree with those
from simulations.
key words: cellular neural networks, image processing, cloning

template, stability

1. Introduction

Since Cellular Neural Networks (CNNs) were proposed
by Chua and Yang [1], [2], they have been successfully
developed for various high-speed parallel signal process-
ings such as image processing [3]–[10] as well as model-
ing of nonlinear phenomena [16]–[21].

Up to the present, many kinds of templates for
single-layer and two-layer CNNs have been already pro-
posed for special purposes. Reference [15] provides
many templates and algorithms for the applications of
image processing with single-layer CNNs. The image
processing such as center point detection, skeletoniz-
ing and object separation etc. with single-layer CNNs,
can be carried out by the iterative use of different
time-invariant templates [11]–[14], where each single-
layer CNN is iteratively used to perform a part of the
task. After the operation of CNN has attained to the
steady state or reached at some state, the next single-
layer CNN begins to perform the next part of the task.
In this way, the process iteratively continues until the
whole task is completed. This procedure is really te-
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dious serial image processing. On the other hand, it is
well known in the neural networks that if a multi-layer
structure neural network is taken into consideration,
it will have more wide applications in different fields
such as linearly non-separable problem, optimization
and pattern recognition, etc. [32]. This mechanism will
be also valid to the cellular neural networks. Actu-
ally, the concept and the interesting applications of the
two and more layer CNN structures have already been
proposed in [1], [16]–[21], [27]–[29], where the CNNs are
used in generating nonlinear phenomena such as au-
towaves, pattern formation, Radon transform of a bi-
nary image and so on. Another interesting application
of two-layer CNN in [30] was proposed as highly parallel
method for mapping and navigation of an autonomous
robot.

In this paper, we will systematically investigate the
ability of CNNs with two-layer structure in image pro-
cessing. Through our many experimental examples, we
found that the two-layer CNNs efficiently behave com-
pared to the single-layer CNNs for many image process-
ing applications.

This paper is organized as follows: In Sect. 2, a
two-layer cellular neural network model is described as
the extension of the single-layer CNN [1], in which two
coupling templates are introduced. In Sect. 3, several
interesting simulations for image processing are given
in detail. All of them show that the two-layer CNNs are
more efficient for the applications of image processing
compared to single-layer CNNs. In Sect. 4, the stabil-
ity of the two-layer CNN with symmetric and/or special
coupling templates is discussed based on the Lyapunov
function technique, whose equilibrium points are calcu-
lated by the trajectories in the phase plane.

2. Two-Layer CNN Architecture

Now, let us formulate the system equations of the two-
layer CNNs by introducing two coupling templates C1

and C2. We assume that each layer of the CNN is com-
posed of a two-dimensional M by N array structure as
shown in the left hand side of Fig. 1. Each cell in the
array is denoted by c(i, j), and has two state variables
x1(i, j), x2(i, j), where (i, j) stands for the position of
a cell in the array, for 1 ≤ i ≤ M and 1 ≤ j ≤ N .
The state equations of each cell are given by two first-



YANG et al.: IMAGE PROCESSING OF TWO-LAYER CNNS—APPLICATIONS AND THEIR STABILITY—
2053

u1

B1

A1

A2

B2u2

First

Second

M

N

layer

layer

C2C1

A cell c(i, j)
Fig. 1 A two-dimensional cellular neural network, and
coupling between the first and second layers.

order differential equations given by Eq. (1), and the
output equations are given by Eq. (2), where f(·) is a
piecewise-linear nonlinear function defined by Eq. (3).
Figure 2 shows the characteristics of the output func-
tion. We define the state variables of the first layer by
x1(i, j), and those of the second layer by x2(i, j). u
and y refer to the input and output variables of the
cell. A(i, j; k, l), B(i, j; k, l), and I mean the feedback
template, filter template and bias current, respectively.
The index 1 and 2 stand for the first layer and second
layer of the two-layer CNN array. C1(i, j; k, l) is the
coupling template to transfer the second layer output
to the first layer input, and C2(i, j; k, l) is vice versa.
They also show the weight of the local couplings among
the cells in the neighborhood Nr(i, j) as the templates
A(i, j; k, l) and B(i, j; k, l). r is the coupling radius. In
general, r takes the value of 1 or 2. An example of
r = 1 for a particular cell is shown by the gray cells in
Fig. 1.

dx1,ij

dt
= −x1,ij + I1

+
∑

C(k,l)∈Nr(i,j)
A1(i, j; k, l)y1,kl

+
∑

C(k,l)∈Nr(i,j)
B1(i, j; k, l)u1,kl

+
∑

C(k,l)∈Nr(i,j)
C1(i, j; k, l)y2,kl

dx2,ij

dt
= −x2,ij + I2

+
∑

C(k,l)∈Nr(i,j)
A2(i, j; k, l)y2,kl

+
∑

C(k,l)∈Nr(i,j)
B2(i, j; k, l)u2,kl

+
∑

C(k,l)∈Nr(i,j)
C2(i, j; k, l)y1,kl




(1)

y1,ij = f(x1,ij)
y2,ij = f(x2,ij)

}
(2)

f(x) = 0.5(|x + 1| − |x− 1|). (3)

The block diagram of two-layer CNN is shown by
Fig. 3, which constitutes a closed-loop system. Observe
that they share out the tasks in image processing and
cooperate with each other, which cannot be performed
with single-layer CNNs. Note that CNNs proposed in
some literatures [11]–[15] are serial image processing
with single-layer CNNs, and our two-layer CNNs on
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Fig. 2 The CNN output function described by the
piecewise-linear sigmoid characteristic.
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Fig. 3 Block diagram of the two layer CNN.

the contrary are parallel image processing. Moreover,
when one of the templates C1 and C2 is set to zero, the
CNN becomes an open-loop system and behaves as the
cascade connection of two single-layer CNNs. There-
fore, the two-layer CNNs will have wide applications in
image processing compared to the single-layer CNNs.

3. Applications in Image Processing

Image processing is one of the most important ap-
plications of the CNNs, and there have been already
proposed many kinds of templates for the single-layer
CNNs. In this section, we will give some important
examples of the two-layer CNNs.

3.1 Linearly Non-separable Problems

In binary value image processing, some logic opera-
tions between two images are often introduced such
as Logic OR, AND and NOT, etc. The Logic OR,
AND and NOT belong to linearly separable problems
in image processing, whose templates with single-layer
CNNs have been reported in the literature [15]. In fact,
this kind of CNNs is extremely useful to realize these
logic operations. For some linearly non-separable tasks
(e.g. Logic XOR), they cannot be directly solved by the
single-layer CNNs. However, we can solve them with
the two-layer CNNs, directly.

Now, let us consider a simplified two-layer CNN,
i.e., all parameters besides the center positions in the
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Fig. 4 The trajectories of state variables for various g1 and
g2, where we set a1,00 = a2,00 = 2 and the stable and unsta-
ble equilibrium points are denoted by the solid dots and circles,
respectively.

templates A1, A2, B1, B2, C1 and C2 are zero. For
simplification, we can omit the subscript (i,j), because
each cell in the CNNs is coupled in the same way. Thus,
the cell equations are written as follows:

ẋ1 = −x1 + a1,00y1 + b1,00u1 + c1,00y2 + I1
= −x1 + a1,00y1 + g1

ẋ2 = −x2 + a2,00y2 + b2,00u2 + c2,00y1 + I2
= −x2 + a2,00y2 + g2


 (4)

For the self-feedback coefficients a1,00 > 1 and a2,00 >
1, the trajectories of the state variables without g1 and
g2 behave like as the solid line in Fig. 4. The trajectories
of Eq. (4) can be obtained by shifting g1 and g2 values
up and down as shown by the dotted lines in the figure.
Observe that if we choose the initial conditions x1(0)
and x2(0) larger than the unstable equilibrium points
shown by circles, the steady-state output will be given
by 1, and otherwise, the outputs will be given by −1.
Thus, we have the following output relations depending
on the initial conditions;

y1 = sgn
[
x1(0) +

g1
a1,00 − 1

]

= sgn
[
x1(0) +

b1,00u1 + c1,00y2 + I1
a1,00 − 1

]

y2 = sgn
[
x2(0) +

g2
a2,00 − 1

]

= sgn
[
x2(0) +

b2,00u2 + c2,00y1 + I2
a2,00 − 1

]




(5)

where b1,00, b2,00, c1,00, c2,00, I1 and I2 are the constant
parameters. u1 and u2 are the inputs of cells, which are
usually equal to 1 or −1 corresponding to black or white
pixel in the binary images, or are between 1 and −1 for
the gray scale images. Therefore, by suitably selecting
these parameters and initial state conditions, we can
obtain the expected outputs.

For example, consider the two-layer CNN to per-
form a linearly non-separable task—logic XOR. The
logic function can be written as

Fig. 5 An example for solving a linearly non-separable prob-
lem. (a), (b) and (c) are the input, the initial state condition
and the output of the first layer, (d), (e) and (f) are the input,
the initial state condition and the output of the second layer,
respectively.

F = X1 ⊕X2. (6)

In this logic, the input of two pixels has four possible
combinations, and the output will be black only if one
of the two pixels is black. The templates are:

A1=A2=


 0 0 0

0 2 0
0 0 0


 , B1=B2=


 0 0 0

0 1 0
0 0 0


 ,

C2=


 0 0 0

0 −2 0
0 0 0


 , C1 =0, I1 =−1, I2 =−1.

(7)

Consider an example for solving a linearly non-
separable problem shown in Fig. 5. One of the two given
images is set to the input u1 of the first layer CNN and
the initial state x2(0) of the second layer. Another im-
age is set to the input u2 of the second layer and the
state x1(0) of the first layer. The execution result is
obtained from the output of the second layer as shown
by Fig. 5, where (a) and (d) are two input images of
the two layers, and (b) and (e) are the initial states.
The execution result is shown by (f), where the black
pixels are obtained only when one of the two inputs has
a black pixel, and white pixels are obtained for every
other case. The output of the first layer shows the re-
sult obtained by Logic AND of the two images. These
results can be calculated by the relations Eq. (5). From
the above simulation result, we have shown that the
simplified two-layer CNNs are capable to perform lin-
early non-separable tasks.

3.2 Compound Tasks

There are many complicated tasks such that we need to
apply some steps of single-layer CNN operations such
as Logic operation, edge detection and diffusion, etc.
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Fig. 6 Endocardial boundary detection (a) the initial states
and inputs of both two layers, (b) the output of the first layer,
(c)the output of the second layer.

in the step by step manner. Hence, these processes are
tedious and complicated to choose their templates. We
show in this section that it can be directly executed by
the one step of a two-layer CNN.

3.2.1 Feature Detection of Endocardial Image

Medical image processing is one of major topics of
CNNs [31]. The boundary detection, which is one of
the feature extraction techniques, is of great impor-
tance both for qualitative and quantitative analysis for
some medical image processing. Its image will help the
doctors to correctly examine the patient’s conditions.
In this subsection, let us consider such an example that
a two-layer CNN will detect the endocardial boundary
of left ventricle from ultrasonic (US) image as shown
in Fig. 6(a). Assume that we want to detect the en-
docardial boundary and superimpose it on the original
image. This process can be more efficiently executed
by the two-layer CNN in one step, compared to the
single-layer CNNs [31].

Namely, the first layer CNN executes a threshold
process with certainly diffusing and filtering. The sec-
ond layer detects the edges from the first layer output
with C2 template and superimposes them on the orig-
inal image. The final result can be obtained in the
second layer output. The templates are given as fol-
lows:

A1=


 0 1.6 0

1.6 2 1.6
0 1.6 0


 , B1=0, C1=


 0 0.5 0

0.5 2 0.5
0 0.5 0


 ,

A2=


 0 0 0

0 −1 0
0 0 0


 , B2=2, C2=


 −1 −1 −1
−1 8 −1
−1 −1 −1


 ,

I1 =0, I2 =−1. (8)

In this case, the original US image is set as both two
layers as the initial states, and inputted to second layer
as shown in Fig. 6(a). The input of the first layer may
be arbitrary due to B1 = 0. In the simulation, we set
the first layer input as the same US image and applied
the zero-fixed boundary condition to both two layers.

Fig. 7 An example for solving object separation problem. (a),
(b) and (c) are the initial state condition, the transient result and
the output of the first layer. (d) is the input of the first layer and
the initial state condition of the second layer, (e) and (f) are the
transient results and the output of the second layer, respectively.

Thus, we obtained the expected result Fig. 6(c) by su-
perimposing the endocardial boundary on the original
image. Figure 6(b) is binary endocardial image sepa-
rated from the original image.

3.2.2 Object Separation

In this subsection, we consider another application to
continuously extract a character from a word, and rec-
ognize it. After a character is extracted, it must be
erased from the original text. This process can be rec-
ognized as an object separation. Now, let us consider a
simple case separating the round and triangle objects
from the three images of the round, rectangular and tri-
angle as shown in Fig. 7(d). This task can be executed
by two processes such as extracting the chosen objects
by setting two pointers in advance as the initial states
at the positions of the round and triangle objects in
the first layer, and erasing the extracted objects from
the original image at the same time in the second layer.
This task can be similarly carried out by a single step
of two-layer CNN as follows.

The original binary image shown by Fig. 7(d) is in-
putted to the first layer input and set as the initial state
of the second layer. By setting two pointers in advance
at the first layer as the initial state shown by Fig. 7(a),
we can extract the specified objects under the consider-
ation with recall template [15]. Its output is transferred
to the second layer through C2. Then, we can execute
the logic difference at the second layer with logic dif-
ference template [15]. Thus, the extracted two objects
are obtained by the first layer output, and the rest rect-
angle object is obtained by the second layer output as
shown by Figs. 7(c) and (f), respectively. Figures 7(b)
and (e) are the transient results of the first and second
layers. In this example, we also have chosen zero-fixed
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boundary condition [1]. The templates are

A1 =


 0.5 0.5 0.5

0.5 2 0.5
0.5 0.5 0.5


 , B1 =


 0 0 0

0 4 0
0 0 0


 , C1 = 0,

A2 =


 0 0 0

0 2 0
0 0 0


 , B2 = 0, C2 =


 0 0 0

0 −1 0
0 0 0


 ,

I1 = 0.25, I2 = −1. (9)

From the above two examples, we can conclude
that the two-layer CNN can execute each compound
task in one step, where each layer shares out the tasks
and cooperates in each other. However, if we use single-
layer CNNs, it will take two or more steps in the sequen-
tial manner. Thus, the two-layer CNN is more efficient
compared to the single-layer CNNs.

3.3 Complex Tasks

In many applications of image processing and pattern
recognition, it is very important to detect the center
point of a given object, because it is used as the ref-
erence position of the object. Unfortunately, the def-
inition of the center point is very ambiguous, because
there are various objects such as convex, concave, disk
with white holes, etc. In this paper, we define “the
center point is located at the halfway from the further-
most points of a given object image.” Therefore, at
first, a given object image is changed into a rectangu-
lar block including a given object with shadow template
[15]. Thus, the center point problem is reduced to the
problem of finding out the middle point of the rectangu-
lar object. If a single-layer CNN is applied to the center
point problem, we need to progressively peel off one col-
umn or row pixels from four directions—left, bottom,
right and up hand sides. These sequential processes
are continued to get the center point. The number of
iterations depends on the size of the object. This is a
very complicated process. If we use a two-layer CNN,
this task can be solved by two steps. The first step is
to detect the center line of the object, and the second
step is to detect the center point of the above center
line.

3.3.1 Detection of the Center Line of Object

Now, consider a center line detection problem shown in
Fig. 9(a). The object image is set to the initial states
of both CNN layers as shown by Figs. 9(a) and (g). We
used the following templates to simultaneously peel off
the most left and right hand side pixels:

A1=


 0 0 0

0.5 2 0.5
0 0 0


 , C1=


 0 0 0

0 2.8 −2
0 0 0


 ,

B1 =0,
I1 =−2,

Fig. 8 All possible landscapes of a cell.

Table 1 The landscape and stable equilibrium point of a cell
in the first layer.

Landscape g1,ij initial state stable output
case (a) −3.8 −1 −1

case (b) −6.8 −1 −1
case (c) −1.2 1 −1
case (d) −0.2 1 1
case (e) 2.8 1 1
case (f) 1.8 1 1
case (g) −2.8 −1 −1

A2=


 0 0 0

0.5 2 0.5
0 0 0


 , C2=


 0 0 0
−2 2.8 0
0 0 0


 ,

B2 =0,
I2 =−2, (10)

The cell’s state equations can be rewritten in the fol-
lowing forms:

ẋ1;ij = −f1(x1;i,j) + g1
ẋ2;ij = −f2(x2;i,j) + g2

}
(11)

where

f1(x1;i,j) = x1;i,j − (|x1;i,j + 1| − |x1;i,j − 1|),
f2(x2;i,j) = x2;i,j − (|x2;i,j + 1| − |x2;i,j − 1|),
g1;i,j =0.5y1;i,j−1+0.5y1;i,j+1+2.8y2;i,j−2y2;i,j+1−2,
g2;i,j =0.5y2;i,j+1+0.5y2;i,j−1−2y1;i,j−1+2.8y1;i,j−2.

(12)

To analyze the stability of the equilibrium point of a
cell, we restrict the discussion to a landscape of the cell
by listing all those neighboring states, including itself.
Since the two state x1(0) and x2(0) are the same at
the beginning of this simulation, the landscape can be
divided into seven possible cases as shown in Fig. 8, in
which the black squares denote cells having value 1 and
the white squares −1 valued cells. On the other hand,
the crossed square cells stand for ‘don’t care’ for the
center cell, because the template coefficients in Eq. (10)
corresponding to those positions are zeros.

For the case of Fig. 8(a), we have

g1;i,j = 0.5y1;i,j−1+0.5y1;i,j+1+ 2.8y2;i,j− 2y2;i,j+1−2
= 0.5×(−1)+0.5×(−1)+2.8×(−1)−2× (−1)−2
= −3.8.

In this case, we have y1 = sgn[x1(0)− 3.8] from the re-
lations (5). Thus, we have y1 = −1 (white) for x1(0) ≤
−1. Similarly, for the other cases from Figs. 8(b) to (g),
their stable equilibrium points can be obtained as listed
in Table 1. Observe from the table that the output of
the center cell only in the case (c) will be changed from
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Fig. 9 An example for extracting the center line of an object. States from (a) to (f) are
the output of the first layer in the time progress, and those from (g) to (l) are the output
of second layer. Final results of the two layer CNN are shown by (f) and (l).

1 (black) to −1 (white), and unchanged for the other
cases. Thus, the first layer of the CNN performs a
peeling-off of the leftmost pixels of the object as shown
in Fig. 9(b). By the similar analysis, the second layer
performs a peeling-off of the rightmost pixels of the ob-
ject as shown in Fig. 9(h). These peelings are executed
at the same time in each layer. Thus, we get the mid-
dle results as shown by Figs. 9(c) and (i), respectively.
After that, the landscape can be divided into eight pos-
sible cases as shown in Fig. 10. At this moment, we have
g1;i,j = −2.8 and y1 = sgn[x1(0) − 2.8] = −1 for case
Fig. 10(g), g2;i,j = −2.8 and y2 = sgn[x2(0)−2.8] = −1
for case Fig. 10(c). Thus, both the rightmost pixels of
the first layer and the leftmost pixels of the second layer
are peeled off as shown in Figs. 9(d) and (j), respec-
tively. Figures 9(e) and (k) are the same as (a) and
(g), except for the both end pixels which are peeled
off. Thus, one cycle of the peeling-off is completed.
This cycle continues until the vertical centerline is re-
mained, where the transient has arrived at the steady
state corresponding to Fig. 9(f). This dynamic process
can be observed from the graph of the sum of State-
error Square varying with the integration time shown
in Fig. 11. The sum of State-error Square is defined as

SCNN (t) =
M∑
i=1

N∑
j=1

((x1,ij(t + ∆t) − x1,ij(t))2

+ (x2,ij(t + ∆t) − x2,ij(t))2) (13)

The peaks show the states when the pixels from the two
layers are unbalanced states. When the object is com-
pletely peeled into center line, the sum of state-errors
square decays to zero. The two layer stable outputs are
shown by Figs. 9(f) and (l), respectively. In this simula-
tion, the zero-fixed boundary condition is also adopted.

Fig. 10 All possible landscapes of a cell at a transient.

Fig. 11 The sum of State-error Square via time for center line
extraction.

3.3.2 Detection of the Center Point from the Above
Line

To detect the center point from the above center line,
we need to apply the same algorithm to the center line
with the transposed templates as follows:
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Fig. 12 An example for extracting the center point of line. (a),
(b) and (c) are the initial state condition, the transient result
and the output of first layer. (d), (e) and (f) are the initial state
condition, the transient result and the output of the second layer,
respectively.

A1=


 0 0.5 0

0 2 0
0 0.5 0


 , C1=


 0 0 0

0 2.8 0
0 −2 0


 ,

B1 =0,
I1 =−2,

A2=


0 0.5 0

0 2 0
0 0.5 0


 , C2=


 0 −2 0

0 2.8 0
0 0 0


 ,

B2 =0,
I2 =−2, (14)

The transient behaviors are shown in Fig. 12. Thus, we
can find the center point in two steps.

4. Stability of Two-Layer Cellular Neural Net-
works

Since the CNNs are usually required to be stable for the
image processing applications, the studies on complete
stability have been vigorously discussed and many cri-
teria have been obtained [1], [23]–[26]. In this section,
we will discuss the convergence property, and its re-
lated problems for the two-layer CNNs with symmetric
and/or special coupling templates.

For analyzing the convergence properties of dy-
namic nonlinear systems, one of the most effective tech-
niques is Lyapunov’s method, which has been success-
fully applied to the stability analysis of single-layer
CNN [1]. In this section, we analyze the stability of
the two-layer CNN with the same techniques. We de-
fine a Lyapunov function E(t) of a two-layer CNN by
the scalar function, which is similar to the one used
in [1], [22] and can be interpreted as the “generalized
energy” for a two-layer CNN.

E(t) = −1
2

∑
(i,j)

∑
(k,l)

A1(i, j; k, l)y1,ijy1,kl

+
∑
(i,j)

∑
(k,l)

B1(i, j; k, l)y1,iju1,kl

− 1
2

∑
(i,j)

∑
(k,l)

C1(i, j; k, l)y1,ijy2,kl

+
1
2

∑
(i,j)

y2
1,ij −

∑
(i,j)

I1y1,ij

− 1
2

∑
(i,j)

∑
(k,l)

A2(i, j; k, l)y2,ijy2,kl

+
∑
(i,j)

∑
(k,l)

B2(i, j; k, l)y2,iju2,kl

− 1
2

∑
(i,j)

∑
(k,l)

C2(i, j; k, l)y2,ijy1,kl

+
1
2

∑
(i,j)

y2
2,ij −

∑
(i,j)

I2y1,ij (15)

Therefore, we can show that the function E(t) is
bounded as follows:

max
t

|E(t)| ≤ Emax (16)

Where

Emax = +
1
2

∑
(i,j)

∑
(k,l)

|A1(i, j; k, l)|

+
∑
(i,j)

∑
(k,l)

|B1(i, j; k, l)|

+
1
2

∑
(i,j)

∑
(k,l)

|C1(i, j; k, l)|

+
1
2

∑
(i,j)

∑
(k,l)

|A2(i, j; k, l)|

+
∑
(i,j)

∑
(k,l)

|B2(i, j; k, l)|

+
1
2

∑
(i,j)

∑
(k,l)

|C2(i, j; k, l)|

+ MN(1 + |I1| + |I2|) (17)

Now, let us assume the templates satisfy the following
condition Eq. (18):

A1(i, j; k, l) = A1(k, l; i, j)
A2(i, j; k, l) = A2(k, l; i, j)
C1(i, j; k, l) = C2(k, l; i, j)
C2(i, j; k, l) = C1(k, l; i, j)


 (18)

From Eq. (15), we have the following relation:

dE(t)
dt

= −
∑
(i,j)

[(
dy1,ij

dt

)2

+
(
dy2,ij

dt

)2
]
≤ 0 (19)

Thus, we found that the energy function is monotone
decreasing, where we used the following constraint con-
ditions:

dy1,ij

dx1,ij
=

{
1 |x1,ij | < 1
0 |x1,ij | ≥ 1 (20)
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x1,ij = y1,ij , |x1,ij | < 1 (21)

dy2,ij

dx2,ij
=

{
1 |x2,ij | < 1
0 |x2,ij | ≥ 1 (22)

x2,ij = y2,ij , |x2,ij | < 1 (23)

We found that from Eqs. (16) and (19), for any given
inputs u1, u2 and the initial states x1, x2, we obtain
that

lim
t→∞

E(t) = const. (24)

and

lim
t→∞

dE(t)
dt

= 0 (25)

Thus, under the condition Eq. (18), we always have the
stable steady state outputs in both two layers after the
transient. Now, we show that both the states x1 and x2

approaches to the equilibrium points. Let us consider
the system equations Eqs. (1)–(3) again, and rewrite
them in the following form:

dx1,ij(t)
dt

= −f1(x1,ij(t)) + g1(t)
dx2,ij(t)

dt
= −f2(x2,ij(t)) + g2(t)


 (26)

where

f1(x1,ij)=x1,ij−
1
2
A1(i, j; i, j)(|x1,ij +1|−|x1,ij−1|)

f2(x2,ij)=x2,ij−
1
2
A2(i, j; i, j)(|x2,ij +1|−|x2,ij−1|)

g1(t) =
∑

(k,l) �=(i,j)

A1(i, j; k, l)y1,kl +
∑
(k,l)

C1(i, j; k, l)y2,kl

+
∑
(k,l)

B1(i, j; k, l)u1,kl + I1

g2(t) =
∑

(k,l) �=(i,j)

A2(i, j; k, l)y2,kl +
∑
(k,l)

C2(i, j; k, l)y1,kl

+
∑
(k,l)

B2(i, j; k, l)u2,kl + I2

Observe that g1(t) and g2(t) are not related to the
states x1,ij and x2,ij , and are only the functions of
the outputs (y1, y2), inputs (u1, u2) and biases (I1, I2).
Therefore, the trajectories of Eq. (26) for A1(i, j; i, j) >
1 and A2(i, j; i, j) > 1 have the same structures as
shown in Fig. 4, and have the stable and unstable equi-
librium points. Thus, we can conclude for the condi-
tion Eq. (18) that the steady state of two-layer CNN
is completely stable, in the meaning that both states
and outputs are in the steady state. The validity of the
above analysis has been verified by the above simula-
tions shown in Sects. 3.3.1 and 3.3.2.

5. Conclusions

In this paper, we have proposed a two-layer cellular
neural network model, and discussed the applications
and stability. We found that it has many interesting
applications such as linearly non-separable task—logic
XOR, some compound tasks and complex problems—
the center point detection of the object. Although, of
course, they can be solved by single-layer CNNs, the
applications of the two-layer CNNs to these problems
are very efficient compared to the single-layer CNNs.
Especially, the center point detection problem with the
two-layer CNNs can be found the solution in two steps,
however, if we use the single-layer CNNs, it will be
found many steps depending on the object size in serial
manner. We can prove the stability for the special cases
of two-layer CNNs, where its necessary conditions are
proved by the Lyapunov function and behaviors of the
trajectories on the phase plane. In future problems, we
want to find the special applications of the two-layer
CNNs such that they cannot be solved by the single-
layer CNNs.
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