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PAPER

Chaotic Wandering and Its Analysis in Simple Coupled

Chaotic Circuits

Yoshifumi NISHIO†a) and Akio USHIDA†b), Regular Members

SUMMARY In this paper, four coupled chaotic circuits gen-
erating four-phase quasi-synchronization of chaos are proposed.
By tuning the coupling parameter, chaotic wandering over the
phase states characterized by the four-phase synchronization oc-
curs. In order to analyze chaotic wandering, dependent variables
corresponding to phases of solutions in subcircuits are introduced.
Combining the variables with hysteresis decision of the phase
states enables statistical analysis of chaotic wandering.
key words: chaos, chaotic wandering, chaos synchronization,

chaotic circuits

1. Introduction

Spatiotemporal phenomena observed in coupled chaotic
networks, namely coupled systems of many chaotic
cells, have attracted many researchers’ attention. The
studies on coupled chaotic networks are classified into
two categories; discrete-time systems and continuous-
time systems. For discrete-time mathematical models,
there have been numerous excellent results. Kaneko’s
coupled map lattice is the most interesting and well-
studied system [1]. He discovered various nonlinear
spatiotemporal chaotic phenomena such as clustering,
Brownian motion of defects and so on. Also Aihara’s
chaos neural network is the most important chaotic net-
work from an engineering point of view [2]. His study
indicated a new possibility for engineering applications
of chaotic networks, namely dynamical search of pat-
terns embedded in neural networks utilizing chaotic
wandering. Furthermore, the application of chaos neu-
ral networks to optimization problems is widely stud-
ied ([3] and references therein). On the other hand,
for continuous-time systems, several results on arrays
of Chua’s circuits have been reported (e.g. some pa-
pers in [4]). However, many of these studies treated
only parameter values for which an isolated chaotic
cell does not generate a chaotic attractor; namely only
multiple stable sinks or multiple stable limit cycles.
Hence, the main subject of many studies has been the
wave propagation phenomenon observed for a given set
of initial patterns and there are few studies on spa-
tial patterns observed after vanishing effects of the
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initial patterns. Namely, the pattern switching phe-
nomenon caused by chaotic wandering, as observed in
Aihara’s discrete-time chaos neural network, has not
yet been studied well in continuous-time network mod-
els. Therefore, in order to fill the gap between studies of
discrete-time mathematical abstract systems and stud-
ies of continuous-time real physical systems, it is im-
portant to investigate simple continuous-time coupled
chaotic circuits generating chaotic wandering, cluster-
ing, pattern switching, and so on.

The authors have proposed continuous-time cou-
pled chaotic circuit systems and have investigated the
generation of spatial patterns and chaotic wandering
of spatial patterns [5]. Chaotic wandering in the case
of coexistence of asymmetric attractors [6] and control
of generating spatial patterns [7] have been also inves-
tigated. An important feature of the coupled circuits
was their coupling structure. Namely, four adjacent
chaotic circuits were coupled by one resistor. Because
such a coupling exhibited quasi-synchronization with
phase difference [8], [9], various spatial patterns could
be generated. This would be followed by the generation
of several complicated spatiotemporal chaotic phenom-
ena similar to those observed in discrete-time mathe-
matical models. Therefore, the network based on the
coupled circuits would be a good model to clarify the
physical mechanism of spatiotemporal chaotic phenom-
ena in continuous-time systems. However, because it
is extremely difficult to treat higher-dimensional non-
linear phenomena in continuous-time systems theoret-
ically, we have to develop several tools to reveal the
essence of the complicated phenomena.

In this paper, four-phase quasi-synchronization of
chaos and chaotic wandering over the phase states
characterized by the quasi-synchronization are reported
to be observed in simple coupled chaotic circuits.
Although the circuits in this paper are similar to
those proposed in [5], generating four-phase quasi-
synchronization is more stable and easier to deal with
than the two types of quasi-synchronizations reported
in [5], which were almost impossible to analyze. Fur-
thermore, statistical analysis using dependent variables
corresponding to phases of the solutions in subcircuit
is carried out. We will be faced with a problem where
the first result will not describe the actual phenomenon
well. Careful investigation of the phase states reveals
that numerous inadequate decisions during transitions
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cause the unexpected result. In order to avoid the in-
adequate decisions, two methods are introduced; in-
troductions of intermediate phase states and hysteresis
decision. Computer simulated results show that the
hysteresis decision makes the statistical analysis more
reliable. Various characteristics of the chaotic wander-
ing will be clarified through the analysis.

2. Circuit Model

Figure 1 shows the circuit model. In the circuit, four
identical chaotic circuits are coupled by one resistor R.
Each subcircuit is a three-dimensional autonomous one
and consists of three memory elements, one linear nega-
tive resistor and one diode. We can regard the diodes as
purely resistive elements, because their operation fre-
quency is not too high. The coupling structure is sym-
metric in the sense that the exchange of any two subcir-
cuits does not cause any change of the system structure.
Also the coupling is complete in the sense that a signal
of one subcircuit can reach the others without passing
through the rest.

At first, the i-v characteristics of the diodes are ap-
proximated by two-segment piecewise-linear functions
as

vd(ik) =
1
2
(rd ik + E − | rd ik − E | ) . (1)

By changing the variables and parameters,
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the normalized circuit equations are given as

Fig. 1 Circuit model.




dxk

dτ
= β(xk + yk)− zk − γ

4∑
j=1

xj

dyk

dτ
= α{β(xk + yk)− zk − f(yk)}

dzk

dτ
= xk + yk

(k = 1, 2, 3, 4) (3)

where

f(yk) = 0.5 (δ yk + 1− | δ yk − 1 | ). (4)

Note that when the coupling parameter γ, which is in
proportion to R, is equal to zero, the coupling term
in (3) vanishes. Figure 2 shows a typical example of
chaotic attractors observed from the isolated subcir-
cuit. Throughout this paper, let us fix all of the circuit
parameters except the coupling parameter (γ and R)
for each subcircuit to produce the chaotic attractor in
Fig. 2; α=7.0, β=0.14 and δ=100.0 for computer cal-
culations and L1=100.7mH, L2=10.31mH, C=34.9 nF
and r=334Ω for circuit experiments. Moreover, for all
of the computer calculations, the fourth-order Runge-
Kutta method is used with step size h = 0.005.

3. Four-Phase Quasi-Synchronization of Chaos
and Chaotic Wandering

We can observe four-phase quasi-synchronization of
chaos from the coupled circuits for a relatively wide
range of γ (or R). Because of chaotic oscillations, the
signals cannot synchronize completely. But we can
clearly see that the signals from the four subcircuits
are synchronized with about 90◦ phase differences. Fig-
ures 3 and 4 show an example of the observed four-
phase quasi-synchronizations of chaos. In the figures
the phase differences of x2, x3 and x4 with respect to
x1 are almost 90◦, 180◦ and 270◦, respectively.

Because of the symmetry of the coupling structure,

Fig. 2 Typical example of chaotic attractors observed from
each subcircuit. (a) Computer calculated result. xk vs. zk.
α=7.0, β=0.14, γ=0.0 and δ=100.0. (b) Circuit experimen-
tal result. Ik vs. vk. L1=100.7mH, L2=10.31mH, C=34.9 nF,
r=334Ω and R=0.0Ω. H: 0.8mA/div. V: 1.3V/div.
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Fig. 3 Four-phase quasi-synchronization of chaos (computer
calculated result). γ=0.30. (a) x1 vs. x2. (b) x1 vs. x3. (c) x1

vs. x4. (d) x1 vs. z1. (e) Time waveforms.

Fig. 4 Four-phase quasi-synchronization of chaos (circuit ex-
perimental result). R=198Ω. (a) I1 vs. I2. (b) I1 vs. I3. (c) I1
vs. I4. (d) I1 vs. v1. (e) Time waveforms. (a)–(c) 0.8mA/div.
(d) H: 0.8mA/div. V: 1.3V/div. (e) H: 0.1msec/div.
V: 2.0mA/div.

six different combinations of phase states coexist;

S1: (0◦, 90◦, 180◦, 270◦),
S2: (0◦, 90◦, 270◦, 180◦),
S3: (0◦, 180◦, 90◦, 270◦),
S4: (0◦, 180◦, 270◦, 90◦),
S5: (0◦, 270◦, 90◦, 180◦),
S6: (0◦, 270◦, 180◦, 90◦).

(5)

Note that one subcircuit should be a reference for the
phase difference since the system is autonomous. It is
easy to observe all of the phase states in (5) by giving
proper initial conditions. (For circuit experiments, we
may have to repeat the on and off switching operations
of our power supply several times before we observe all
of the phase states.)

On increasing γ (or R), we can observe chaotic
wandering over the six phase states of the four-phase
quasi-synchronization. For such parameter values, all
of the six phase states become unstable and the solu-
tion starts wandering over the six phase states. Al-
though the wandering speed depends significantly on
the parameter value, we could observe in the circuit
experiments that one phase state switches to another
within one second or after 10 seconds. The wandering
is truly chaotic, i.e. we cannot predict when the next
switching will occur or which phase state will appear
next.

In order to show that the chaotic wandering exists
in the circuit, let us define the Poincaré section as z1 =
0 and x1 < 0 and plot the values of xk (k=1, 2, 3,
4) on xk − n (n denotes the number of iterations of
the Poincaré map) plane when the solution hits the
Poincaré section. Figure 5(a) shows time series xk(n)
corresponding to the four-phase quasi-synchronization
of chaos in Figs. 3 and 4, while Fig. 5(b) corresponds
to chaotic wandering. In Fig. 5(a), each xk remains
in a certain range, while in Fig. 5(b), we can see xk

often changes its range in a complicated manner. Note
that x1 always remains in a certain range, because of
the definition of the Poincaré map. In the following
analysis, all of the results are based on the data on the
Poincaré map obtained by computer simulations.

4. Analysis of Chaotic Wandering

4.1 Introduction of Phase Variables

Although one can see that the phase states in Fig. 5(b)
switch in an irregular manner, it is almost impossible
to understand the generating phenomenon completely.
Therefore, we introduce the following independent vari-
ables from the discrete data of xk(n) and zk(n) on the
Poincaré map.

ϕk(n) =




π − tan−1 zk+1(n)
xk+1(n)

xk+1(n) ≥ 0

− tan−1 zk+1(n)
xk+1(n)

xk+1(n) < 0 and zk+1(n) ≥ 0

2π − tan−1 zk+1(n)
xk+1(n)

xk+1(n) < 0 and zk+1(n) < 0

(k = 1, 2, 3.) (6)



NISHIO and USHIDA: CHAOTIC WANDERING AND ITS ANALYSIS IN SIMPLE COUPLED CHAOTIC CIRCUITS
251

Fig. 5 Time series xk(n). (a) Four-phase quasi-synchroniza-
tion of chaos. γ=0.30. (b) Chaotic wandering over different
phase states of four-phase synchronizations. γ=0.46.

Because the attractor observed from each subcircuit
is strongly constrained onto the plane yk = 0 when
the diode is off, these variables can correspond to the
phase differences between the subcircuit 1 and the oth-
ers. (Note that the argument of the point (x1(n), z1(n))
is always π, because of the definition of the Poincaré
map.)

Figure 6 shows the time evolution of ϕk(n) cal-
culated from the data in Fig. 5. In Fig. 6(a), ϕ1(n) is
always around π/2, ϕ2(n) is always around π and ϕ3(n)
is always around 3π/2, while in Fig. 6(b), ϕk(n) changes
its range in a complicated manner.

Using the independent variables in (6), we can give
a precise definition of the six phase states in (5) as
follows,

S1: ϕ1 < ϕ2 < ϕ3,
S2: ϕ1 < ϕ3 < ϕ2,
S3: ϕ2 < ϕ1 < ϕ3,
S4: ϕ2 < ϕ3 < ϕ1,
S5: ϕ3 < ϕ1 < ϕ2,
S6: ϕ3 < ϕ2 < ϕ1.

(7)

This makes it possible to decide in which phase states
the solution lies. This could be very useful for statistical
analysis of chaotic wandering. For example, we can
check when switchings of one phase state to another
occur, we can count how many switchings occur in a
certain time interval, and so on.

Figure 7 shows how many switchings of phase

Fig. 6 Time series ϕk(n) calculated from the data in
Fig. 5. (a) Four-phase quasi-synchronization of chaos. γ=0.30.
(b) Chaotic wandering over different phase states. γ=0.46.

Fig. 7 Switching number during one million iterations.

states occur during one million iterations of the
Poincaré map. The horizontal axis shows the coupling
parameter γ. As we can see, a large number of switch-
ings are counted for γ > 0.45. Namely, for example, at
γ = 0.47 one switching occurs in every 10 iterations on
average. This number is too large and the result does
not describe the actual phenomenon well.

In order to determine the cause, we investigate
switchings in a certain interval carefully. Figure 8 shows
when switchings occur along with the time series of
ϕk(n). In the figures, each vertical line in the bottom
diagrams indicates one switching. Figures 8(b) and (c)
are the magnifications of parts of Fig. 8(a). From the
diagrams of ϕk(n) in Fig. 8(a), we can expect the phase
state in the interval [0, 4500] to be as S5 and the phase
state in the interval [6500, 15000] to be S6. It should
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Fig. 8 Investigation of switchings of phase states. γ=0.46.
(a) Switchings from S5 to S6. (b) Magnification during the tran-
sition. (c) Magnification indicating momentary changes.

Fig. 9 Probability distribution of ϕi. Horizontal slot m indi-
cates interval [(m − 1)π/32, mπ/32]. γ=0.46.

be noted that it takes a relatively long time to finish
the transition in the interval [4500, 6500].

In contrast, the diagram of the switching indicates
another phenomenon. Namely, from the start to the
end of the transition a huge number of switchings are
detected. Further, several switchings are detected in
the interval without any transitions. Figure 8(b) shows
that during the transition, the solution stays in the
neighborhood of a hyper-plane expressed as ϕ1 = ϕ2

and ϕ3 = 0. The hyper-plane corresponds to the
boundary of the phase states S1, S3, S5 and S6. Hence,
small fluctuations around the hyper-plane cause a large
increase of the number of switchings. Figure 8(c) shows
that a momentary change of ϕk causes two consecutive
inadequate decisions.

Figure 9 shows the probability distribution of ϕi.
In the figure interval [0, 2π] is divided into 64 small in-
tervals equally and the vertical axis indicates the prob-

Fig. 10 Probabilities of solutions being in Si and SIi.

ability that ϕi lies in the corresponding interval. The
left group corresponds to the minimum values of ϕi and
the right group corresponds to the maximum values of
ϕi. We can see from the figure that the probability
that ϕi remains around 0 is not small. (±30◦ almost
corresponds to the slots 1–5 and 60–64.) Hence, we
must consider that the situation in Fig. 8(b) occurs fre-
quently. Namely, some methods should be applied to
avoid the inadequate decisions caused by the solutions
remaining around the above-mentioned hyper-planes.

4.2 Introduction of Intermediate Phase States

The number of inadequate decisions during transitions
would decrease if we regarded neighborhoods of hyper-
planes where the solutions stay during transitions as
new phase states. Hence, the following three interme-
diate phase states are introduced,

SI1: min{2π − ϕ1, ϕ1} < θI ∩ |ϕ2 − ϕ3| < θI

SI2: min{2π − ϕ2, ϕ2} < θI ∩ |ϕ1 − ϕ3| < θI

SI3: min{2π − ϕ3, ϕ3} < θI ∩ |ϕ1 − ϕ2| < θI

(8)

where θI is a parameter deciding the size of the region of
the intermediate phase states. Note that the conditions
of the decisions corresponding to the original six phase
states in (7) are modified so that their regions do not
overlap with those of (8).

Figure 10 shows probabilities of the solutions being
in the phase states after introducing the intermediate
phase states. Each plot indicates the averaged value
of the probabilities of the corresponding phase states,
which are given by computer simulations (10 million
iterations of the Poincaré map). As θI increases, the
probabilities corresponding to the intermediate phase
states become large. For example, for γ = 0.46 and
θI = 45◦, the sum of the probabilities correspond-
ing to the three intermediate phase states is 3×0.0335,
namely the solution stays in the intermediate phase
states about 10% of the total time.

Figure 11 shows how the switchings change after
introducing the intermediate phase states for different
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Fig. 11 Switchings of phase states with three intermediate
states. γ=0.46. (a) θI = 60

◦. (b) θI = 75
◦. (c) θI = 90

◦.

values of θI . As we can see from the figures, the inter-
mediate phase states make the situation worse with re-
spect to the expectations. Undoubtedly, inadequate de-
cisions during the transition (in [4500, 6500]) decrease
considerably as θI increases. However, the switching
number in the other intervals increases considerably.
As a result, the total number of switchings becomes
less meaningful.

We have to conclude that introducing new bound-
aries of the phase states causes an increase of the in-
adequate decisions around the new boundaries. How-
ever, the fact that the solutions stay for a relatively
long time in the intermediate phase states is useful for
understanding the phenomenon correctly.

4.3 Introduction of Hysteresis Decision

In order to reduce the inadequate decisions during tran-
sitions without influence on the other interval, we in-
troduce a hysteresis feature into the decisions of the six
phase states in (7). Namely, we do not count switchings

Fig. 12 Switchings of phase states with hysteresis decision.
γ=0.46. (a) θH = 30◦. (b) θH = 45◦. (c) θH = 60◦.

if the angle between any two phases of four is smaller
than θH . In other words, we make decisions of the
phase states only if the following is satisfied;

min{ϕ1, ϕ2, ϕ3, 2π − ϕ1, 2π − ϕ2, 2π − ϕ3,

|ϕ1 − ϕ2|, |ϕ1 − ϕ3|, |ϕ2 − ϕ3|} > θH (9)

Figure 12 shows how the switchings change after
introducing the hysteresis decision for different values
of θH . We can see that even for small θH , the inade-
quate decisions decreases considerably. The hysteresis
decision can eliminate the inadequate decisions by the
momentary change as well as those during transitions
successfully.

Figure 13 shows how the switching numbers de-
crease by introducing the hysteresis decision. We can
observe from Fig. 13(b) that slopes of the curves change
around θH = 50◦ regardless of the coupling parameter.
Although the theoretical reason why the curves have
the turning points has not been clarified, it may be
caused by the existence of the two inadequate decisions
as shown in Figs. 8(b) and (c).
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Table 1 shows the probabilities of sojourn time in
each phase state for different values of θH , which are
given by computer simulations (10 million iterations of
the Poincaré map). For example, for θH = 0◦ (i.e.
no hysteresis decision) the probability that the sojourn
time is 1 is 78.2%. This means that the solution enter-
ing a phase state will exit to another phase state after
one step of the Poincaré map with probability 78.2%.
Furthermore, for θH = 0◦ the probability that the so-
journ time is more than 1000 is 0.1%. Clearly, this
result does not explain the phenomenon correctly. (See
the horizontal scale of Fig. 5.) For θH ≥ 45◦, the effect
of the hysteresis is clear. Especially, for θH ≥ 60◦ the
probability that the sojourn time is less than 100 is zero
and for θH = 75◦ the probability that the sojourn time
is more than 10000 is 37.8%. The distribution of these
probabilities of the sojourn time is depicted in Fig. 14.
The slots in the horizontal axis of the figure denote

Fig. 13 Switching number with hysteresis decision.
(a) Ordinary scale. (b) Logarithmic scale.

Table 1 Probabilities of sojourn time for different θH . γ=0.46.

Sojourn time (n)
θH

0◦ 15◦ 30◦ 45◦ 60◦ 75◦

1 0.782 0.554 0.284 0.000 0.000 0.000
1–10 0.931 0.693 0.382 0.022 0.000 0.000
1–100 0.977 0.959 0.832 0.177 0.000 0.000
1–1000 0.999 0.985 0.951 0.611 0.137 0.017
1–10000 1.000 1.000 0.994 0.919 0.761 0.622
1–∞ 1.000 1.000 1.000 1.000 1.000 1.000

the ranges of the sojourn time and are summarized in
Table 2.

Finally, Table 3 shows the averages of the sojourn
time in each phase state for different values of θH , which
are given by computer simulations. The average num-
bers of iterations are converted into average time using
the approximated value of the period (0.36 [msec]) in
Fig. 4(e). Although the corresponding data obtained
from real circuit experiments are not available, the re-
sults for θH ≥ 45◦ do not appear to be far from the
observed phenomenon.

5. Conclusions

In this study, chaotic wandering observed in four cou-
pled chaotic circuits has been reported and analyzed.

Fig. 14 Probability distribution of sojourn time. γ=0.46.
Ranges of slots are in Table 2. (a) θH = 30◦. (b) θH = 45◦.
(c) θH = 60◦. (d) θH = 75◦.

Table 2 Ranges of slots in Fig. 14.

Slot Sojourn time (n) Slot Sojourn time (n)

1 1−2 9 501−1000
2 3−5 10 1001−2000
3 6−10 11 2001−5000
4 11−20 12 5001−10000
5 21−50 13 10001−20000
6 51−100 14 20001−50000
7 101−200 15 50001−100000
8 201−500 16 100001−∞
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Table 3 Average of sojourn time for different θH . γ=0.46.

θH
Average of sojourn time

iteration (n) time [sec]

0◦ 12.0 0.00432
15◦ 50.4 0.0181
30◦ 307.9 0.111

45◦ 2697.8 0.971
60◦ 7079.2 2.55
75◦ 9915.9 3.57

In order to analyze chaotic wandering, dependent vari-
ables corresponding to phases of solutions in subcircuits
were introduced. Combining the variables with hys-
teresis decision of the phase states enabled statistical
analysis of chaotic wandering.

Although the results obtained by introducing the
intermediate phase states were not good, we will con-
tinue to work with the idea of the intermediate phase
states in the future, because the simulation results sug-
gest that the solution stays for a long time in the inter-
mediate phase states.

This is the first step in the statistical analysis of
chaotic wandering in simple continuous-time circuits.
However, we believe this result would contribute to un-
derstanding the higher-dimensional nonlinear phenom-
ena, because the phenomenon analyzed in this paper
would be observed in various other coupled chaotic cir-
cuits. At the same time, we feel that more detailed sta-
tistical analysis on the phenomenon should be carried
out and more complicated phenomena in larger sized
coupled circuits should also be investigated. Further-
more, some theoretical supports would make the results
more reliable, though this may be difficult.
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