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SUMMARY We propose here a time-domain shooting algo-
rithm for calculating the steady-state responses of nonlinear RF
circuits containing parasitic elements that is based on both a
modified Newton and a secant methods. Bipolar transistors and
MOSFETs in ICs have small parasitic capacitors among their
terminals. We can not neglect them because they will gives large
effects to the shooting algorithm at the high frequency. Since our
purpose is to develop a user friendly simulator, we mainly take
into account the relatively large normal capacitors such as cou-
pling and/or by-pass capacitors and so on, because the parasitic
capacitors are usually smaller and contained in the device mod-
els. We have developed a very simple simulator only using the
fundamental tools of SPICE, which can be applied to relatively
large scale ICs, efficiently.
key words: steady-state analysis, RF circuits, time-domain se-

cant method, parasitic capacitors, SPICE

1. Introduction

It is very important to analyze the steady-state re-
sponses for designing communication circuits such as
modulators, mixers, etc. When the attenuation of tran-
sient response is sufficiently large, we can easily calcu-
late the response with the brute-force method. However,
it is sometimes happened that the transient response
continues for a long period due to the small attenuation.
In this case, there are two basic approaches; i.e., the
frequency-domain method [1]–[3] and the time-domain
method [4]–[7]. The former is based on the harmonic
balance method, which is usefully applied to weakly
nonlinear circuits. However, the computational effi-
ciency rapidly decreases in the cases when the number
of nonlinear elements increases, and the nonlinearities
become stronger, because the determining equation for
calculating the Fourier coefficients becomes very large
scale. Fortunately, some algorithms for solving large
scale determining equation have been proposed [8], [9]
which are efficiently applied to the system with the
large scale sparse Jacobian matrix. Frequency-domain
relaxation method [14] is also efficiently applied to the
analysis of relatively large scale weakly nonlinear RF
circuits.

On the other hand, the time-domain method is
based on the transient analysis, where the initial guess
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giving rise to the steady-state response is calculated
by the Newton type shooting method. The first one
is based on the Newton Raphson method whose Ja-
cobian matrix is estimated by the analysis of the time-
varying sensitivity circuits equal to the number of state-
variables [4], [5]. Note that it will take a large computer
memory for a large scale circuit containing many par-
asitic elements. Fortunately, the transient terms due
to the parasitic elements will be quickly reduced in the
sensitivity analysis, so that the Jacobian matrix cor-
responding to the elements will be approximately re-
placed by the unit matrix in the Newton iteration [6].
Thus, it is possible to reduce the size of the Jacobian
matrix. Although the extrapolation method is not the-
oretically guaranteed the convergency, it is a very sim-
ple algorithm, and seems to be suitable for the imple-
mentation with the SPICE simulator [7].

We propose here an algorithm for calculating the
steady-state responses based on both the modified New-
ton and secant methods [10], [11]. Since the secant
method is a type of Newton method whose Jacobian
matrix is successively modified in the iterations, it can
be applied to calculate both the stable and unstable
steady-state responses if the circuit does not contain
parasitic elements. Otherwise, our method can be only
applied to caluculate the stable steady-state response.

There have been published many secant methods
[19], and we already applied one of them to calculate the
steady-state responses of nonlinear circuits [20] which is
based on a discrete Newton method. The algorithm be-
comes sometimes unstable near at the solution point. In
this paper, we apply much more stable algorithm using
an orthogonal procedure [10]. Note that although the
convergence ratios of the secant methods are smaller
than the Newton method, they can be usefully applied
to get the solution of a nonlinear system when the Ja-
cobian matrix can not be explicitly obtained.

Thus, the method is suitable for the development
of a simple SPICE simulator, because we only use the
state variables at every periodic point in the transient
analysis, and need not to use the time-varying sensitiv-
ity circuits in the iteration.

At the first step in our algorithm, the initial guess
is estimated by the modified Newton method in the
meaning that the Jacobian matrix is calculated at the
dc operating point, and after then, the matrix is succes-
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Fig. 1 LSI circuit with the normal capacitors C1, ..., Cn.

sively modified by a secant method in the iterations. In
our algorithm, the initial guess giving rise to the steady-
state response is calculated for the normal capacitor
voltages after the transient response due to the para-
sitic capacitors is reduced. The transient period is ap-
proximately estimated from the frequency-domain driv-
ing point characteristic for the modified circuit where
the normal capacitors are replaced by the bias voltage
sources. Thus, the characteristic curve can be easily
obtained by the ac-sweep of SPICE, and the poles are
estimated from the approximate rational polynomial
function. We have developed a user friendly simula-
tor using the fundamental tools of SPICE, which can
be applied to the relatively large scale ICs, efficiently.

2. Modified Newton and Secant Methods

2.1 Effect of Parasitic Elements

To focus on the main idea of our algorithm, consider
a LSI circuit shown in Fig. 1, where C1, ..., Cn are the
normal capacitors such as coupling and/or by-pass ca-
pacitors and so on, which are considered as sufficiently
large compared to the parasitic capacitors C1p, ..., Cnp,
and they will give large effects to the period of tran-
sient response. We call the normal capacitors simply
capacitors, in the following. For example, bipolar tran-
sistors have typically 10−12F order nonlinear capaci-
tors among the emitter-base, the base-collector and the
emitter-collector [15], [16]. Depending on circuit config-
urations, we may not neglect their effects in the high
frequency such as over 100MHz. Since MOSFETs also
have small parasitic capacitors such as the gate-drain
CGD, the gate-source CGS , and the bulk-gate, bulk-
drain and bulk-source, CBG, CBD, and CBS , respec-
tively [16]. Although they may give an effect to the
transient response in the high frequency region, the ef-
fect will be much smaller than that from the normal
capacitors. Furthermore, it is troublesome to consider
them in the circuit simulation, so that we mainly take
into account the normal capacitors in our simulation
algorithm.

Assume that the circuit is driven by multiple in-
puts e(t) and j(t), whose frequency components are
f1, ..., fn. If they are the integer relations, the steady-

state response has a period called the total period [3]
that is defined by

T =
1

G.C.M. {f1, . . . , fn}
, ν = 2π/T (1)

where G.C.M. means the greatest common measure.
Hence, we can estimate the fundamental frequency
component for the multiple frequencies and the period.

Now, let us derive the circuit equation in the form
of algebraic-differential equation. At first, let us choose
a normal tree for a given circuit such that it must con-
tain the maximum possible number of the capacitors,
and after then, as many as the parasitic capacitors, and
lastly, the resistors. Next, we define the variables such
as v for the capacitor voltages, vp for the parasitic ca-
pacitors and vR for the resistors in the normal tree.

Then, we can describe the circuit equation in the
following forms using the fundamental cutset equations
and the some loop equations [17];

C(v)v̇ = f1(v, vR, vp, νt) (2a)

εCp(vp)v̇p = f2(v, vR, vp, νt) (2b)

f3(v, vR, vp, νt) = 0 (2c)

where Eqs. (2a) and (2b) are the cutset equations cor-
responding to the normal tree capacitors and the para-
sitic capacitors, respectively. Equation (2c) is the loop
equations containing the normal tree resistors and/or
C-E loops [17]. We assume that ε for the parasitic ca-
pacitors shows a sufficiently small constant.

Our time-domain shooting algorithm finds out the
capacitor voltages v(Tp) giving rise to the steady-state
response, where Tp is the time such that the effect of the
parasitic capacitors becomes negligible in the transient
response. To estimate Tp in a qualitative point of view,
we consider the variational equation at the steady-state
response {v0, vR0, vp0};

v = v0 +∆v, vR = vR0 +∆vR, vp = vp0 +∆vp (3)

Substituting Eq. (3) into Eq. (2), we have


 C(v0)∆v̇

εCp(vp0)∆v̇p

0


 =




∂f 1
∂v

∂f 1
∂vR

∂f 1
∂vp

∂f 2
∂v

∂f 2
∂vR

∂f 2
∂vp

∂f 3
∂v

∂f 3
∂vR

∂f 3
∂vp




×


 ∆v

∆vR

∆vp


−




∂C(v)
∂v v̇0∆v

ε∂Cp(vp)
∂vp

v̇p0∆vp

0


 (4)

where the Jacobian matrix is estimated at the steady-
state response. Equation (4) is a time-varying system
with the period T . From the third row, we have

∆vR = −
(

∂f3

∂vR

)−1(
∂f3

∂v

∂f3

∂vp

)(
∆v
∆vp

)
(5)
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Now, assume that the matrices C(v0) and Cp(vp0)
are positive and definite at the steady-state response.
Then, they have the inverse matrices, and substituting
Eq. (5) into Eq. (4), we have the following form;(

∆v̇
ε∆v̇p

)
=
(

A11(νt) A12(νt)
A21(νt) A22(νt)

)(
∆v
∆vp

)
(6)

In order to investigate the effect of the parasitic capac-
itors, we consider the second equation of Eq. (6);

ε∆v̇p = A21(νt)∆v + A22(νt)∆vp (7)

First term in the right hand side is a variational value
from the capacitor voltages which behaves like as a
forced input in Eq. (7). It is known that the solution of
a linear differential equation consists of two solutions;
one is the particular solution vpp(t), and another is the
general solution vpt(t) satisfying

ε∆v̇pt = A22(νt)∆vpt (8)

Then, it is known from the Floquet theorem [12] that
the general solution has a following property;

∆vpt(t + T ) = exp(λpT )∆vpt(t), for λp = λ2/ε (9)

where λ2 is a characteristic multiplier of the time-
varying differential Eq. (8) whose real part will be neg-
ative. Observe that if |Reλp| is sufficiently large, the
transient terms due to the parasitic capacitors will be
quickly reduced, and the solution of Eq. (7) will quickly
approach to the particular solution vpp(t). It means
that the response vp(t) only depends on v(t) after the
transient term due to the parasitic capacitors is re-
duced, and the variable vp(t) no more behaves like as
the state variables. Therefore, after the period Tp, it is
possible to apply our shooting method only to the nor-
mal capacitor voltages v(t), and we can find the initial
guess giving rise to the steady-state response.

Now, let us estimate the approximate transient pe-
riod Tp in the case that the cirsuit is at the dc poerating
point. Namely, we calculate the transient response for
the modified circuit whose the capacitor Cs are replaced
by the voltage source v(0) equal to the operating points.
Then, the resultant circuit only contains the parasitic
capacitors, and Tp can be estimate by the transient re-
sponse. It is also possible to estimate Tp from the fre-
quency response. Namely, let us calculate the driving
point admittance in the frequency domain at any ca-
pacitor port†. In practice, the frequency response can
be calculated by the ac-sweep of SPICE at one of the
capacitor ports. The response curve is approximately
described by a rational polynomial as follows;

Y (s) =
a0 + a1s + . . . + amsm

b0 + b1s + . . . + bnsn
(10)

In order to estimate the approximate transient period
Tp, we need to know the smallest pole in the negative
of the left hand complex plane, so that it is enough to

apply the lower order of a rational polynomial function
to the approximation [21].
Remark that if the effect from some of the normal
capacitors to the transient response is negligible, we
can also consider them as parasitic capacitors.

2.2 Our Secant Method

Our purpose is to develop a user friendly simulator us-
ing the fundamental tools of SPICE, where we only
consider the capacitor voltages v(t) for determining the
steady-state response. For a large scale circuit, it is
troublesome to choose the parasitic capacitor voltages
as the state variables, because the number becomes
enormous when the circuit scale increases. Further-
more, they are contained in the device models.

Now, let the period of transient response due to the
parasitic elements be Tp. Then, we need to calculate
the initial guesses v(Tp) giving rise to the steady-state
response, which will satisfy the following determining
equation††:

F (v (Tp)) = v (Tp + T )− v (Tp) = 0, for T = 2π/ν

(11)

Let us solve the determining Eq. (11) by the iterational
method. It can be efficiently calculated by the Newton
method [4] as follows;

vj+1 (Tp) = vj (Tp)−
(

∂F (v (Tp))
∂v (Tp)

∣∣∣∣
v(Tp)=vj(Tp)

)−1

× F
(
vj (Tp)

)
, j = 0, 1, . . . (12)

The Jacobian matrix can be calculated by the analysis
of time-varying sensitivity circuits for all of the state
variables [4], [5] in the period [Tp, T + Tp]. Therefore,
the computer efficiency will be decreased as the circuit
scale becomes lager and the total period T becomes
longer.

On the other hand, there is a simple algorithm
based on the modified Newton method, where the Ja-
cobian matrix is estimated at the dc operating point.
Namely, each column of the matrix is calculated by the
transient response to a sufficiently small impulsive in-
put for corresponding capacitor; ∆v (T ) /∆v (0) for all
the capacitor Cs. If we use the same Jacobian matrix

∂F (v(T ))
∂v (T )

=
(

I − ∆v (T )
∆v (0)

)
(13)

†It is known that although there are the same number
of different driving point admittances as the capacitor Cs,
their poles for all of the admittances are located at the same
points in the complex plane.

††It is shown in Sect. 2.1 that we can get the exact steady-
state response with our secant method after the transient
phenomena due to the effect of parasitic capacitors is com-
pletely finished.



1026
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.6 JUNE 2000

at all of the iterations, the algorithm is called the mod-
ified Newton method. Although the algorithm can be
efficiently applied to the weakly nonlinear circuits, the
convergence is not guaranteed for the strong nonlinear-
ities.

Hence, we propose here a secant method [10] such
that the Jacobian matrix [11] is successively improved
in the latter iterations. Let J0 be the initial Jacobian
matrix estimated by the above method. Then, we have
at the first iteration

J0δv0(Tp) = −F
(
v0(Tp)

)
(14)

for v1(Tp) = v0(Tp) + δv0(Tp)

Thus, we need to estimate the modified Jacobian
matrix J1. Suppose it satisfies the following relation;

F
(
v1(Tp)

)
= F

(
v0(Tp)

)
+ J1δv0(Tp) (15)

where J1 = J0 + D0

D0 corresponds to the variational Jacobian matrix to
be determined. From Eqs. (14) and (15), we have

F
(
v1(Tp)

)
= D0δv0(Tp) (16)

where D0 can be solved as follows;

D0 =
F
(
v1(Tp)

) (
x0
)T

(x0)T δv0(Tp)
(17)

where x0 is an arbitrary vector satisfying
(
x0
)T

δv0(Tp)
�= 0. In the same manner, we have the following itera-
tion;

δvj(Tp) = −
(
J j
)−1

F (vj(Tp)) (18)

vj+1(Tp) = vj(Tp) + δvj(Tp) (19)

Dj =
F
(
vj+1(Tp)

) (
xj
)T

(xj)T δvj(Tp)
(20)

Jj+1δvj(Tp) = F (vj+1(Tp))− F (vj(Tp)) (21)

for J j+1 = J j + Dj , j = 1, 2, . . .

where if j > n, xj is chosen orthogonal to the previous
n−1 steps [18], δvj−n+1(Tp), . . . , δvj−1(Tp), and if j <
n, we can only demand that xj is orthogonal to the
available j − 1 steps, δv1(Tp), . . . , δvj−1(Tp). Observe
that our secant method only uses the data v(t) at t =
Tp and t = T + Tp in the transient response, and it is
obtained with the SPICE. Thus, we can easily develop a
user friendly simulator only using fundamental tools of
SPICE, where we need not to derive any troublesome
circuit equations. It makes our scant method much
more powerful.

Our secant algorithm

S.0 Set j = 0, and set the initial guess v0 (Tp) equal to
the bias voltages. The initial Jacobian matrix J0

is estimated by Eq. (13) at the dc bias points.
Applying the rational approximation to the driv-
ing point admittance obtained by the ac-sweep of
SPICE, we estimate the approximate transient pe-
riod Tp due to the parasitic elements. Set x0 =
[1, 0, . . . , 0], and stopping condition ε.

S.1 Calculate the transient response in the period of
[0, T + Tp] from the initial guess v(0) = vj (Tp).
Let us estimate the variation by

δvj(Tp) = −
[
J j
]−1

F
(
vj(Tp)

)
S.2 Calculate the solution at j + 1st iteration

vj+1(Tp) = vj(Tp) + δvj(Tp)

S.3 If
∥∥F (vj+1(Tp)

)∥∥ < ε for a given small ε, then
stop. Otherwise, calculate the variational value of
the Jacobian matrix

Dj =
F
(
vj+1(Tp)

) (
xj
)T

(xj)T δvj(Tp)

S.4 Set Jj+1 = Jj + Dj .
S.5 Set j = j + 1 and go to Step 1.

In this algorithm, the vector xj must be chosen orthog-
onal to the previous vectors δvi, i = j−n+1, . . . , j−1,
which is efficiently executed with the Schmidt orthonor-
malization procedure [18]. Observe that, to implement
our algorithm, we only need to execute the transient
analysis in the period [0, Tp + T ] and get v(Tp) and
v(T + Tp).

The flow chart of our secant method is shown in
Fig. 2. In our algorithm, the data vj(Tp) and vj(Tp +
T ) are obtained from the transient analysis of SPICE
and they are transferred to C-language program, where
the initial guess vj+1(Tp) is calculated with the secant
method. After then, the data from C-language program
is again transferred to SPICE, and so on.
Remark 1: It is known that if one of the variables in
δvj(Tp) = vj+1(Tp)−vj(Tp) approaches to zero, the xj

obtained by the orthonormalization procedure [18] may
have serious error. In this case, the iteration sometimes
happens to become unstable. Thus, we will recommend
to remove the variable vi from v if

|δvj
i | < δ, for some i

for a sufficiently small δ, where δ depends on both the
digit of computer and the truncation error in the nu-
merical integration method [13]. Thus, the dimension
of J j and Dj should be reduced by one, and the orthog-
onal vector xj should be estimated for the remaining
variables.
Remark 2: If we define the convergence ratio by p in
the following relation
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Fig. 2 Flow chart of the secant method.

||vj+1(Tp)− v̂(Tp)|| = k||vj(Tp)− v̂(Tp)||p

where v̂ means the exact solution, then, the conver-
gence rate of the secant method is p = 1.62 [11]. Al-
though the ratio is smaller than the Newton method
p = 2, our secant algorithm is a very simple because
we need not solve the sensitivity circuit. Therefore,
our method seems to be suitable for developing a user
friendly simulator using SPICE.

3. Illstrative Examples

3.1 RLC Circuit with Nonlinear Resistance

In order to investigate the effect of parasitic capacitors
in the steady-state solution, we consider a simple RLC
circuit as shown in Fig. 3(a), where the parasitic capac-
itor Cp is chosen 10% of the normal capacitor C. Since
λp = −20 due to the parasitic capacitor is very large
in negative, the effect in the transient response will be
negligible after 1 [sec].

Although the number of state variables is 3 in this
example, the transient phenomena will behave like as
2 state-variables circuit after the transient period due
to Cp is reduced. Thus, we can find out the initial
guess v(Tp) giving rise to the steady-state solution after
Tp = 1 [sec].

In Table 1 where the exact solution is obtained
by the Newton method [4]. The second result is ob-
tained by solving the determining equation F (v(0)) =

(a)

(b)

Fig. 3 (a) RLC circuit with nonlinear resistance. R = 1, L =
1, C = 1, Cp = 0.1, iR = vR + v3

R e(t) = sin 2πt. (b)
Convergence rate. Error =


F (vj)


.

Table 1 Comparisons of the initial guesses.

vC(Tp) iL(Tp) vCp(Tp)
Exact solution −7.7357× 10−3 −0.16130 1.4537
F(v(0)) = 0 −5.8436× 10−3 −0.16196 -
F(v(Tp)) = 0 −7.7355× 10−3 −0.16130 -

v(0) − v(T ). In this case, even if the convergence al-
gorithm has a solution, it will be the fault solution in
the (vC(0), iL(0), vCp

(0))-plane†. The third result is ob-
tained with our secant method, where we have chosen
Tp = T for simplicity. After the transient due to Cp is
reduced, the circuit will behave like as in the 2 dimen-
sional plane. Therefore, the result is almost equal to
the exact solution. The convergence ratio is sufficient
large as shown in Fig. 3(b).

3.2 RC Amplifier

Now, consider a simple RC amplifier circuit shown in
Fig. 4(a). The transistor has the small parasitic capac-
itors among the emitter, base and collector [15], which

†Note that there will exist an infinite number of so-
lutions satisfying F (v(0)) = v(0) − v(T ) in 3 dimen-
sional (vC(0), iL(0), vCp(0))-plane because the algorithm us-
ing F (v(0)) is in 2-dimensional plane.
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(a)

(b)

Fig. 4 (a) RC amplifier. R1 = 490 kΩ, R2 = 2kΩ, R3 =
100 kΩ, R4 = 200Ω, R5 = 600Ω, C1 = 10 nF, C2 =
10 nF, C3 = 10 nF, e(t) = 0.1 sin 2π108t [V]. (b) The driving
point characteristic curve at port C1.

cannot be neglected at higher than 100 [MHz].
At first, we choose the coupling capacitors C1, C2

and the by-pass capacitor C3 as the normal capacitors.
To investigate the effect of the parasitic capacitors, the
normal capacitors are replaced with the operating volt-
age sources v1(0) = 1.007 [V], v2(0) = 6.641 [V] and
v3(0) = 0.338 [V], which are obtained by the dc anal-
ysis of SPICE. Now, we apply the ac-sweep of SPICE,
and get the driving point characteristic curve as shown
in Fig. 4(b). We approximate it with the second order
rational function, because we enough to know only the
smallest pole in negative [21]; i.e.,

Y (s) =
3.27×10−4 + 2.81×10−11s + 9.48×10−20s2

1. + 1.415× 10−9s

It is well-known from the circuit theory that although
frequency responses from the other ports have the dif-
ferent characteristics, their poles are located in almost
same point;

λp = −7.1× 108

Therefore, we can hope to get the exact solution with
Tp = 1./7.1× 10−8 � 10−8 [sec], and

F (v(Tp)) = v(Tp)− v(2Tp), for Tp = T

Remark that we can get the solution in 7 iterations.
On the other hand, the time-domain secant method

F (v(0)) neglecting the effect of the parasitic capaci-
tors never converges to any solution. Note that our
algorithm using F (v(Tp)) can find out the steady-state
solution within 28 [sec], and the transient analysis with
the SPICE gets the solution within 241 [sec].

3.3 Four Phase Mixer

This is an example of a relatively large scale four phase
mixer circuit that consists of 122 bipolar transistors,
and some capacitors, as shown in Fig. 5(a). In this case,
the time-domain shooting method based on the Newton
method [4] will be very time-consuming, because the
number of the parasitic is more than 250 in this circuit
and the total period for two inputs is large.

In designing of the mixer circuit, it is very impor-
tant to know the intermodulated frequency components
in the output waveform. Assume that the circuit is
driven by two signals as follows;

v1(t)=282 cos(2π × 13× 106t) [mV] : Local oscillator

v2(t)=9.12 sin(2π × 14× 106t) [mV] : Input signal

The fundamental frequency of the mixer outputs
are 1 [MHz] which are obtained at the v1out, ..., v4out

terminals in Fig. 5(a). In this case, C1, C2 and C3 are
coupling capacitors between the sub-circuits which will
give large effect on the transient phenomena. On the
other hand, the capacitor Cs used as filter circuits in
the output stage do not give the effect to the right
hand sub-circuits, because they are separated by the
buffer amplifiers. Therefore, we have chosen the volt-
ages of C1, C2 and C3 as the state variables in our
secant method.

Furthermore, since the lower side sub-circuits in
this circuit are also separated by a buffer amplifier from
the upper one, we can assume that the voltages at C1,
C2 and C3 will only contain the fundamental frequency
of ω1 = 2π × 13 × 106 and its higher harmonics. This
makes the analysis much easier, because we can define
the total period T = 1/(13× 106) [sec].

Now, let us apply our algorithm to the circuit.
Since the transient period due to the parasitic ca-
pacitors is very short compared to the input fre-
quency 13 [MHz], we can get the same result for both
F (v(0)) = 0 and F (v(T )) = 0 in our algorithm. The
convergence rate for F (v(T )) = 0 is shown in Fig. 5(b).
We found from the result that the convergence ratios in
the first 3 iterations are smaller compared to the follow-
ing iterations. The result can be explained as follows
that the Jacobian matrix has 3 × 3 elements and the
initial matrix J0 estimated at the dc operating point
does not seem to be a good approximation. However,
the Jacobian is successively improved in the iterations.
Thus, the convergence ratio after the first 3 iteration
becomes larger.
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(a)

(b)

(c)

(d)

Fig. 5 (a) Four phase mixer circuit. C1 = C2 = 20 pF, C3 = 2.5 nF, C = 1µF. (b)
Convergence rate. Error =


F (vj)


. (c) Steady-state waveform with our method. (d)

Transient waveform obtained from SPICE.

We compared the computational times for other
different methods.

In Table 2 where “PSS” means the periodic steady-
state analysis based on the time-domain shooting
method, whose SpectreRF is widely used in the RF cir-
cuit simulation. We can conclude that the SpectreRF

(PSS) in this example is inefficient compared with our
method. Thus, we found that our secant method can be
applied to the steady-state analysis of relatively large
scale ICs, efficiently. The output waveforms obtained
from our method and transient analysis of SPICE are
shown in Figs. 5(c), (d), respectively.
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Table 2 Comparison of the computational times.

Computation time
PSPICE (Transient) 704.21 [sec]
SpectreRF (PSS) 140.54 [sec]
Relaxation method [14] 54.99 [sec]
Our secant method 24.48 [sec]

Remark that the total period of the circuit is de-
fined by the difference between the local oscillator and
the input signal frequencies. Thus, when the differ-
ence is very small, the period becomes very longer,
and the time-domain shooting method using Spectr-
eRF becomes time-consuming. Note that we can not
get the steady-state response for f1 = 13 [MHz] and
f2 = 13.1 [MHz] with our 160Mbytes computer because
of the memory over [14]. The computational efficiency
of our method for this example does not be changed
even if the total period becomes longer.

4. Conclusions and Remarks

In this paper, we have shown an efficient time-domain
secant method for calculating the steady-state re-
sponse. Although the convergence rate is smaller than
the Newton method, the algorithm is very simple and
suitable for the development of the user friendly sim-
ulator. In our simulator, the initial guess from the
SPICE is improved by the secant method written by
the C-language program, and the initial guess is again
returned to the SPICE, and so on. We continue the
same iteration until the exact solution can be obtained.
Thus, our algorithm is very simple, and need not derive
any troublesome circuit equations and the sensitivity
circuit analysis. Our simulator will be efficiently ap-
plied to relatively large scale RF circuits such as mod-
ulators and mixers. In this paper, we assumed that the
effect of parasitic capacitors is smaller than the nor-
mal capacitors. However, the efficiency of our method
may be decrease if the transient response Tp due to the
parasitic elements becomes longer.
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