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SUMMARY  Analysis of frequency-dependent lossy transmis-
sion lines is very important for designing the high-speed VLSI,
MCM and PCB. The frequency-dependent parameters are always
obtained as tabulated data. In this paper, a new curve fitting tech-
nique of the tabulated data for the moment matching technique
in the interconnect analysis is presented. This method based on
Chebyshev interpolation enhances the efficiency of the moment
matching technique.
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1. Introduction

The high-speed performance of microwave or digital
circuit systems is limited by the interconnect effects
rather than the switching speed of semiconductor de-
vices. When the operating frequency increases, the cur-
rent density of conductor tends to be great near the sur-
face of the conductor. Due to the high packing den-
sity, the interconnects in VLSI, MCM and PCB are
placed closely each other, and the current density is also
great at the near side between the conductors. They
are known as the skin and proximity effects[ 1], respec-
tively, thus the interconnects of high-speed integrated
circuits have frequency-dependent characteristics. The
frequency-dependent parameters are always obtained by
a numerical procedure and as tabulated data in real fre-
quency. Therefore, the analysis of frequency-dependent
lossy transmission lines with tabulated data is very im-
portant for accurate analysis of VLSI, MCM and PCB.

For frequency-dependent interconnect analysis,
the frequency-domain method [2],[3] is very accurate.
However, this method is not useful from computa-
tional point of view, because the system to be ana-
lyzed contains very large number of transmission lines,
and the frequency-domain method needs large number
of data points. The moment matching technique[4]—
[6] is efficient and accurate for the interconnect anal-
ysis.  Recently, these methods are extended to the
frequency-dependent case[7],[8]. Since the moment
matching technique is essentially Padé approximation
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of a Laplace function, if transfer function is described
in power series of complex s, the moment matching
technique can be applied to the analysis. Thus the
key technique in Refs.[7],[8] is how tabulated data
in real frequency is described in power series of com-
plex s, and the Weighted Least Square Fitting (WLSF)
method in [7] and the piecewise polynomial approxi-
mation in [8] are used.

In this paper, we provide a new curve fitting tech-
nique for describing tabulated data with a power se-
ries of complex s and apply the moment matching tech-
nique to the interconnect analysis. As preceding stage
of the moment matching technique, state variables of
circuit equation are expressed with power series of com-
plex s which is known as moment generation[5]. Thus,
the input-output relation of transmission lines must be
described with matrix polynomial of complex s, and
the frequency-dependent parameter is also required to
be power series of complex s. Therefore, on apply-
ing the moment matching technique to the analysis of
frequency-dependent lossy transmission lines with tab-
ulated data, the accuracy depends on curve fitting tech-
nique of tabulated data. In the WLSF method [7], first,
the tabulated data is approximated by rational func-
tion of complex s, and the rational function is con-
verted into power series of complex s, because the input-
output relation must be expressed by matrix polynomial
of complex s. As suggested in Ref.[7], the rational
function itself in the WLSF method gives good approx-
imation result, but the power series converted from the
rational function is not accurate. Hence, the WLSF
method is not suitable for the moment matching tech-
nique, because the moment matching technique makes
rational function of a specified output from its power
series of complex s. On the other hand, the proposed
method is based on Chebyshev interpolation technique.
Chebyshev polynomial is an almost minimax approxi-
mate polynomial, hence, the proposed method gives a
good fitted curve in the form of power series of com-
plex s. The polynomial must be constructed as having
real coefficients due to realistic impedance or admit-
tance functions. The discrete orthogonal property of
Chebyshev polynomial allows us to construct the con-
tinuous polynomial with real coefficients, different from
the piecewise one in [8].
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In Sect.2, we will modify the matrix exponen-
tial method for describing the input-output relation
of frequency-dependent lossy transmission lines. In
Sect. 3, the curve fitting technique of the tabulating
frequency-dependent parameters is presented. In Sect. 4,
the techniques for getting the time- and frequency-
domain responses are provided by means of the multi
point Padé approximation and the recursive convolu-
tion. In numerical examples, the efficiency of the pro-
posed method is illustrated, comparing with the WLSF
method. Moreover, the time- and frequency-domain re-
sponses are calculated, in order to show that the pro-
posed curve fitting technique is suitable for the moment
matching technique. It is confirmed that these results
agree with the frequency-domain method[2],{3].

2. Frequency-Dependent Lossy Transmission Lines
The frequency-dependent transmission lines are de-

scribed by the Telegrapher’s equation in the Laplace-
domain:

w0 o
where
76 = | v o

Z(s) = R(s) +sL(s), Y(s)=G(s)+sC(s),

z is the distance along the lines, s is the complex fre-
quency, and V(s,z) and I(s,x) are port voltages and
currents of the transmission lines, respectively. The
parameters R(s), L(s), C(s) and G(s) are per-unit-
length registance, inductance, capacitance and conduc-
tance matrices, respectively, and these matrices are ar-
bitrary matrix function of complex s. Actually, each
element of these matrices is not given as a function of
complex s, but tabulated data to some points, jw;’s on
the imaginary axis.

In this paper, our aim is how to apply the moment
matching technique[5],[6] for solving (1). If any trans-
fer functions are described with power series of complex
s, we can apply the moment matching technique to the
analysis, because the moment matching technique is es-
sentially Padé approximation. Hence, it is the key tech-
nique that the input (z = 0)-output (z = d) relation of
transmission lines is described with matrix polynomial
of complex s. Assuming that the parameter matrices
R(s), L(s) C(s) and G(s) are matrix polynomial of
complex s, it is easy to describe the input-output rela-
tion with matrix polynomial, by using the matrix ex-
ponential method[7],[8]. Here we briefly modify the
matrix exponential method to increase the convergency.

Applying the matrix exponential method, the
input-output relation of (1) is given by

Vel ] - enten | Y0
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'(L:O
- n| V(s,0
_ Z%Tns { I(s,o” )
where
T, = %(F(s)d)”.

In Ref. [5], it is illustrated that convergence of the infi-
nite series (2) greatly depends on the length d of trans-
mission lines. If the convergence is smooth, the trans-
mission lines must be divided in some regions (This
implies that exp (F(s)d;) converges more rapidly than
exp (F(s)dg), if di < dg). In this case, the following
relation is very useful in order to get the whole charac-
teristics of transmission lines:

exp (F(s)d) = exp <F(s)g> - exp (F(s)%) . (3
However, dividing the transmission lines requires for
more computational cost, because this means that some
equations are added to the circuit equation. Alterna-
tively, exp (—F(s)%) is multiplied from left side of (2)
instead of dividing, and we can get the following rela-

tion:
on (509 (0] = 02) [5)]

The relation (4) represents the continuity of the voltages
and currents at the center point of the transmission lines,
whereas the relation (2) gives a relation of the output
variables to the input. Thus, the relation (4) is more ef-
fective than (2), because the complexity depends on the
length of the transmission lines.

Assuming F(s) as M degree matrix polynomial of
complex s, F(s) = Zf\io F;st, the coefficients of the
matrix exponential (2) are obtained in recursive man-
ner [7],[8]:

Z Tom (n=0)

T, =4 " o (5)
> Tom (n£0)
m=int(%71)
where
min(n,M)
Fan~k,m—1

d
Tn,m = m——l—l kz:(:)

(n=0,...,mM,m=£0)

M
§ Fan—k,mfl
k=n—mM

Tnm:—
' m+1
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(n=mM+1,...,(m+1M,m+£0)
Tpo="Fnd, (n=0,..., M)
To—1 =1

I is the identity matrix. exp (—F(s)d) can be calculated
by multiplying T, ., by (—1)™*1. Although the ma-
trix exponential (2) converges after 40-50 terms[7],[8],
exp (F(s)d/2) converges more rapidly than exp (F(s)d),
because the length of transmission lines is half.

In order to get the port relation of the transmission
lines, the matrix exponentials of (4) are rewritten in the
block matrix form:

d = [ E! E!
ex _F(s)= | = 11,n 12,n :| "
p(F0F) =3 B B

d = [ E2
exp | F(s)~ | = iln
SCCHEE

where each element matrix has same order. Interchang-
ing the elements of (4), we can get the port relation as
follows:

| Vs,
;Pns [V(s,

3]+ e [0 ] -0

where

Pn |: E%l,n

2 1
EQl,n _E21 n
2 1
Q _ |: E%2,n E%Z,n :|
n = .
E22,n E22,n

3. Chebyshev Interpolation Scheme of Frequency-
Dependent Parameters

In the previous section, the matrix exponential method
is used for describing the input-output relation of
frequency-dependent lossy transmission lines by matrix
polynomial of complex s, where it is assumed that the
parameters given as tabulated data to some points on
imaginary axis are able to write in power series of com-
plex s. In this section, the procedure for making the
power series from the tabulated data is provided.

3.1 Curve Fitting Algorithm

Let r(s), I(s), c(s) and g(s) be an element of R(s),
L(s), C(s) and G(s), respectively, where these values are
given as tabulated data to some points, jw;’s (j = /—1),
on the imaginary axis. Elements z(s) = r(s) + sl(s) of
the series impedance matrix Z(s) and y(s) = g(s)+sc(s)
of the parallel admittance matrix Y (s) are approxi-
mated by (IV — 1)-degree polynomial with respect to
Jjw so that the values of z(s) and y(s) at some s = jw;’s
satisfy
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z(jwi) ]wz » y(Jwi)

HMZ

Z yr(jwi)® (7)

where the coefficients z; and y; are assumed as real
numbers, which is a reasonable assumption due to real-
istic impedance or admittance functions.

Let us consider z(s) only, and y(s) can be obtained
by the same procedure. In Ref.[7], eliminating the loss-
less part of [(s) is introduced in order to approximate
accurately, namely, the lossless part [(co) is separated
from [(jw) such as

I'(jw) = I(jw) — (o). (8)

Then, z'(jw;) = r(jw;)+jw;l’ (jw;) is interpolated by the
Chebyshev series. A transform & = w/wpq, is used to
convert w € [0, Wpqy| into € € [0,1]. Assuming 2’ (—jw)
is complex conjugate to z'(jw), the interpolated poly-
nomial in § € [—1,1] is obtained by

N_ll
Z/(jwmaa:f) = aka(£> )
k=0

where the symbol 3’ denotes the summation with the
first component divided by 2 and Dy (&) = coské (0 <

6§ < w). From the discrete orthogonal property of
Chebyshev polynomial, ay (k =0,1..., N—1) are given
as follows:
if N is odd,
N2—3
4 k
N nz::Or(jwmm cos 8,,) cos kB, + r(0) cos 771-
k: even

a4 — . (k: even)

4
N ijmaw 08 Ol (jwimaz cos 0,,) cos kb,

n=0
(k: odd)
(10a)
if N is even,
r A Ny
~ Zr(jwmm cos 0y,) cos kO,
n=0
B (k: even)
ap — . %_1
N Z JWmaz €08 Oyl (jwpmage cos 6y, cos kb,
n=0
(k: odd)
(10b)
where 6, = 227 is the Chebyshev point, and

JWmaz €08 kBy, is corresponding to jw; in (7). Note that
if N is even number, the information at w = 0 does not
reflect the fitted curve. Hence, N is prefer to be odd
number.

The coefficients a, are real part or imaginary part
only, thus we can derive the power series of jwy,eqé
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having real coefficients. First, 2’ (jwmaz&) of (9) is con-
verted into a power series with respect to £. Using the
recurrence formula of Chebyshev polynomial,

{D0(§)= 1, Di(§)=¢, 11

Di41(€) = 26Dy (§) — Dr—1(8),

Chebyshev polynomials Dy(£) (kK = 2,3,...) are ob-
tained by

DZ(S) = 252 - 17

Dy(¢) = 48° - 3¢,

Dy(§) = 8¢* —8¢% +1,

D5 (&) = 16€° — 206 + 5¢, .

De(&) = 3265 — 48¢* +18¢% — 1, (12)

As a result, the finite Chebyshev series (9) is converted
into a power series with respect to &:

N—-1

> btk (13)

k=0

From (12), D2, (€) and Dagpi1(€) are even and odd
functions, respectively. Thus, ba,, and bgy,+1 in(13) are
respectively real and imaginary part only as ag,, and
Agm+1 in (10a) and (10b). Consequently, z'(jwmaz§)
is expressed in power series of jw,q.¢ with real coeffi-
cients:

z/(jwmamf) =

N—1
jwmawf Z 2 .]Wmaa:f (14)
k=0
where
by
—1)= k:
p (-1) o (k: even)
ib
(-1)% 25 (k: odd)
max

From (8) and (14), an element of the series
impedance matrix of transmission lines is described by

2(8) = z{ + (2] +1(00))s + Z Z, 8", (15)

where all coefficients of s*’s are real numbers.
3.2 Shifted Coefficients of Power Series

When' the multi point Padé approximation[5],[6] is
used to get dominant poles, the shifted moments, that
is, the coefficients of Taylor expansion at an arbitrary
point s are needed. Thus, F(s) in (2) and the matrix
exponential must be a matrix polynomial of complex
g =8— 8.
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Let F(s) be M degree matrix polynomial, F(s) =
Zf\io F.s', then F(s) is converted into a matrix poly-
nomial of complex o = s — sj:

F(s) ZZ( ) ST, (16)

m=0 =0

4. Multi Point Padé Approximation

The time- and frequency-responses are calculated by the
multi point Padé approximation and the recursive con-
volution. Resently, Chiprout and Nakhla[5] have pro-
posed Complex Frequency Hopping (CFH) which ef-
ficiently extracts the dominant poles in binary search
nature from multi point Padé approximation. This
method needs complex number operation (L/U decom-
position, finding poles) so that it is somewhat time-
consuming. So, we modify this method in Padé approx-
imation at arbitrary expansion point by using Celik’s
method [6], and also propose the recursive convolution
with piecewise linear assumption.

4.1 Padé Approximation at Arbitrary Expansion
Point

In the Asymptotic Waveform Evaluation (AWE)
method [4], impulse response of a specified output is
expressed by rational function in the Laplace-domain.
Here, Padé approximation is appropriately applied to
constructing the rational function, where 8§—10 domi-
nant poles at most are obtained. We need more poles
to characterize a specified output accurately. So, CFH
is applied in order to take more dominant poles.

CFH extracts the dominant poles in binary search
nature from the multi point Padé approximation. Thus,
Padé approximation at a point s; is needed. In
Ref.[5], the solutions of the Modified Nodal Admit-
tance (MNA) equation in the Laplace-domain are ex-
panded at a point s, and expressed in the rational func-
tion of complex o = s — s;. Here, complex L/U de-
composition is used to determine the coefficients of de-
nominator polynomial of the rational function, and a
set of the poles are calculated by solving the roots of
the denominator polynomial with complex coefficients.
Since it is somewhat time-consuming, the Padé approx-
imation proposed by Celik [6] are applied.

Assuming complex conjugate expansion points sy
and s_, the impulse response H(s) of a specified out-
put is described by [(¢ — 1)/g] rational function so that
the shifted moments [6] are satisfied as

b+ b et b8t
H(S) _ O;I-— 1S+ + q 18 (17)
+a1s+...+ags?
= Mg +mk710+...+mk)q_1aq_1 (18)

= M_go+ m_k@& + ...

ag—1
+ m_g,g-167

(19)
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where 0 = s — s, 6 = s — s, and m4y,; (i =
0,1,...,¢9— 1) are shifted moments calculated in recur-
sive manner [6].

Rearranging the rational function (17) in complex
o and matching the corresponding powers of o of (18)
give

Mkc = I (20)
where
¢ = (b07b17 T bq—17 ai, a2, ... 7a’q)T7

myg; — (mk’o, mg1,-.. ,m;ﬁq,l)T.

In (20), My, is ¢ x 2¢ matrix and given by

M, =[C, : Cy : —BCy : —BCs] (21)
where
[G1[Co | Cs ]
[ 1] s, s s,qc_l si
1 (s ("7)sh 7 (Dt
_ 1
L 1 (qgl)sk
i mg,0
mEg1 mMk,0
B:
| Mk,g—1 Mkg-2 - Mgo

Since m_j is complex conjugate of my, the determin-
ing equation corresponding (20) with the sifted moment
m_y [6] is obtained by

fc = mj (22)

where the symbol * means complex conjugate.
As a result, the set of coefficients (17) is obtained
by solving 2¢ x 2q linear equation:

Mk b _ Iy
NN @
As suggested in paper[6], L/U decomposition of (23)

is performed by real number operation, to emphasis it,
we rewrite (23) by

b ] [2] =[] e

Note that the set of coefficients of numerator and de-
nominator polynomials (17) is real number.

4.2 Finding Residues

In the Padé approximation (17) at arbitrary point, all of
poles are not always found in left-half complex plane,
thus, unstable poles must be eliminated. Assuming that
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¢’ + 1 stable poles p,(m = 0,1,...,q") are found, the

residue k,,, to each pole p,, is obtained by
A bo+bls+...+bq_15q_1
" gt ast...tags?! s=pu,
(m=0,1,...,q) (25)

4.3 Recursive Convolution with Piecewise Linear
Assumption

Let the impulse response H(s) be given by CFH:

H(s) = LI (26)

5 — D
i=0 Pi

The time-domain response of a specified output is ob-
tained by the convolution integral:

Zk / Py (T)dr (27)

where v;n(t) is the input waveform. The recursive con-
volution [ 10] is very efficient in calculating (27). Then,
we apply this method to getting the time-domain re-
sponse as follows:

n41
(tne1) Zk/ P (tnt1=7) Vi (T)dT
= ZkZ {eplh/ epl(t"_T)vm(T)dT
i=0 0

trn1
+ / eP1<fn+1—T)vm(r)dr} (28)
29

where h = ¢,1 — t,. In Ref.[10], the second term
of (28) is calculated by the trapezoidal rule. However,
if the time interval h is not small, the convolution in-
tegral becomes inaccurate[11]. So, the input waveform
Uin(t) in [ty,t,+1] is assumed as the piecewise linear
function:

U'm(tn+1) - Uz’n(tn) (

Vin(t) = o t—tn) + Vin(ln)
_ Uin(tn—f—l) 4(Uin(tn> t
h
in tn tn — Uin tn tn
LY (tn) +1hv (tnt1)tn (29)

From this assumption, the integral value of the second
term (28) is written in the closed form

[
/ ePi (t”“‘T)vm(T)dT
t

n

1
:_h_p2(1_

I {epz

ePih pih) 'Uin(tn+1)

1—ph *1}'Uzn 'rL (30)
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Fig. 1 Frequency-dependent resistance curves of (2,2) element
of the series impedance matrix of the transmission lines provided
by M. Celik [3].
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Fig. 2 Frequency-dependent inductance of (2,2) element of the
series impedance matrix of the transmission lines provided by M.
Celik [3].

5. Numerical Examples

To show the accuracy of our method, the 3-conductor
transmission lines provided by M. Celik are considered.
The frequency-dependent parameters are listed as the ta-
bles II, I1I in Ref.[7], where the frequency range is from
0 to 7[GHz]. The series impedance matrix Z(s) € C**3
in (1) is approximated in 10-degree matrix polynomial
by using the curve fitting technique in Sect.3. The pa-
rameters at jwpgq c0S Oy, O = %w (n=0,1,...,4),
are needed to determine the coefficients a; in (10a).
However, because the tabulated data in reference[7]
is not obtained at jwmqs cosb,, the cubic spline in-
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Fig.3  (2.,2) element of the series impedance matrix of the trans-
mission lines provided by M. Celik [3].

Table 1 Coefficients of power series given by the proposed
method.
‘ ‘ value ' ‘ value J

o 3.448 cs | —3.292x 1078

c1 4.670 cr 1.956 x 10710

ey | —1.684%x 1072 | cg | —1.601 x 10~ 11

c3 | 5.196 x 107 co 3.295 x 10714

cs | —3.196 x 1077 | c1g | —2.917 x 10715

cs | 4.447 x 107

terpolation is used to get the parameters at the fre-
quency points. Figs. 1, 2 and 3 show the frequency-
dependent resistance, inductance and impedance curves
of (2,2) element z92(s) of the series impedance matrix
Z(s), respectively. The coefficients ¢; (i = 0,1,...,10)
in z99(s) = Zgo ¢;s* are listed in Table 1.

For comparison, the WLSF method [7] is applied
to the same example. The WLSF method approximates
z(jw) with rational function of jw so that it satisfy

do + dljwi + - —|— dm(]wl)m

1+ ejjw; + ...+ en(Jwi)™
(1=0,1,...,m+n)

= z(jw;).

Since the rational function can not be used for the ma-
trix exponential method, the rational function must be
converted into a power series:

do +dis+ ...+ dpys™
l+es+...+e,8"
=co+ci8+ ...+ Cmrns

m-+n

The results by using the WLSF method are also shown
in Figs.1, 2 and 3, where WLSF (rational fuc.) and
WLSF (power series) in these figures mean 5-degree/>5-
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degree rational function and 10-degree power series, re-
spectively.

In Figs. 1, 2 and 3, the WLSF method itself gives
good approximation results, but the power series con-
verted from the rational function is not accurate appar-
ently. Since the moment matching technique is essen-
tially Padé approximation, the transfer function of net-
work must be expressed by a power series of complex s.
Thus, the accuracy of power series rather than rational
function is important for the moment matching tech-
nique. This means that the WLSF method is not suit-
able for the moment matching technique. In Ref.[8],
the parameters are expressed by piecewise polynomial.
This means many applications of the matrix exponential
method for getting the input-output relation of trans-
mission lines, because piecewise polynomial consists of
some polynomials. Therefore, the proposed method is
more effective for the moment matching technique than
the WLSF method [7] or the piecewise polynomial ap-
proximation [8].

The moment matching technique extracts a set of
the dominant poles and residues in the Laplace-domain,
but the proposed curve fitting technique is only verified
at s = jw, not s = a + jw. Hence, it is not clear
whether the proposed curve fitting technique is suit-
able for the moment matching technique or not. So,
the time and frequency responses of the interconnect
network provided by M. Celik[7] as shown in Fig.4
are calculated, in order to illustrate that the moment
matching technique incorporating the proposed curve
fitting technique gives reliable numerical result. In the
example circuit, the 3-conductor transmission lines have
the same frequency-dependent parameters approximated
by 10-degree matrix polynomial in the previous discus-
sion. Figures 5 and 6 show the transient response at the
node V,,,; to a voltage pulse input (0.8 [ns] pulse width,
0.1[ns] rise and fall time) and the frequency response
at the same node to a voltage impulse input, respec-
tively. Here, the impulse response (26) (25-degree/26-
degree rational function) is estimated by using the multi
point Padé approximation in Sect.4, where the maxi-
mum frequency is selected by 5[GHz], and 9 expansion
points are considered. The transient response shown in
Fig.5 is calculated by using the recursive convolution
in Sect.4.3. The frequency response shown in Fig. 6 is
absolute value of the impulse response (26) at s = jw.
These results are compared with the frequency-domain
method (FFT)[3] as shown in Figs.5 and 6. To calcu-
late the transient response shown in Fig. 5, the frequency
response is estimated at 128 frequency points, and the
waveform in the time-domain is calculated by using in-
verse fast Fourier transform. Also, the frequency re-
sponse to a voltage impulse input shown in Fig.6 is
calculated at 128 frequency points. In the frequency-
domain method, each frequency response is calculated
by directly solving the circuit equation at the frequency,
whereas the moment matching technique generates the
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Fig. 4 The circuit including frequency-dependent transmission
lines.

[volt]
1.500

1.200 Proposed

0.900
0.600 ||

0.300

0.000

-0.300

-0.600

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
[nsec]

Fig. 5 Transient response to a pulse input.
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Fig. 6 Frequency response to an impulse input.

rational function of complex s by few estimations of the
circuit equation. Thus, the frequency-domain method is
very accurate. In Figs.5 and 6, the results by using the
proposed curve fitting and the moment matching tech-
niques almost agree with the frequency-domain method.
It means that although the curve provided by the pro-
posed method fits the tabulating frequency-dependent
parameters on the imaginary axis only, this technique is
suitable for the moment matching technique to the anal-
ysis of frequency- dependent lossy transmission lines.

6. Conclusions

A new curve fitting technique for the analysis of
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frequency-dependent lossy transmission lines with tab-
ulated data has been presented. This method is effi-
ciently incorporated with the moment matching tech-
nique[5],[6]. Although the object of this paper is
turned to the moment mathing technique, this method is
easily applied to the method of characteristics by means
of a technique in Ref.[12]. This is our future work.
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