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SUMMARY  Nonuniform transmission lines are crucial in inte-
grated circuits and printed circuit boards, because these circuits
have complex geometries and layout between the multi layers,
and most of the transmission lines possess nonuniform character-
istics. In this article, an efficient numerical method for analyzing
nonuniform transmission lines has been presented by using the
Chebyshev expansion method and moment techniques. Efficiency
on computational cost is demonstrated by numerical example.
key words: nonuniform transmission lines, asymptotic waveform
evaluation (AWE) method, moment techniques, Chebyshev ex-
pansion method

1. Introduction

The high-speed performance of microwave or digital cir-
cuit systems is limited by the interconnect effects rather
than the switching speed of semiconductor devices. To
achieve high performance and high packing density, the
interconnect scheme for multiple metal layers becomes
complicated. The transmission lines are considered as
having nonuniform configuration. Therefore, the analy-
sis of nonuniform transmission lines system is important
for designing the high performance systems on VLSI
circuits, printed circuit boards and multi-chip modules.

Since systems such as VLSI circuits contain very
large number of lumped elements and interconnects
(uniform/nonuniform transmission lines), a computa-
tionally effective method is required for their analysis.
The asymptotic waveform evaluation (AWE) method
satisfies with such requirements, because the computa-
tion speed is two to three orders of magnitude faster
than conventional circuit simulators such as SPICE.
This method is originally proposed for timing analysis
of linear lumped circuits [1]. Due to its efficiency, many
researchers pay much attention on the AWE method or
moment techniques [2]-[6]. However, for the analysis
of distributed networks, the configuration of transmis-
sion lines is simplified to be uniform.

In this article, we extend the AWE method to the
analysis of nonuniform transmission lines system and
discuss fast estimation of transient behavior in the sys-
tem. In the previous work [7], the calculation proce-
dure is based on the Chebyshev expansion method. In
this case, the responses on the spatial space are approx-
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imated in the time-domain by using Chebyshev poly-
nomial, and the Telegrapher’s equation of nonuniform
transmission lines are replaced with a set of ordinary
differential equations of which variables are coefficients
of Chebyshev polynomials. As a result, the responses
are calculated by numerical integration of the ordi-
nary differential equations. In this work, the responses
are approximated in the Laplace-domain different from
original Palusinski’s work [7]. It makes the moment
generation [3] possible for nonuniform transmission
lines system, and the responses in the Laplace-domain
are transformed into the time-domain by the moment
matching technique [1]-[3] in the AWE method. Our
method is effective in achieving high computational ef-
ficiency within acceptable accuracy.

In Sect. 2, we will review briefly the moment gener-
ation for the Modified Nodal Analysis (MNA) equation
in order to generalize the transmission lines system. In
Sect. 3, the calculation procedure for the moments of
nonuniform transmission lines is provided by means of
the Chebyshev expansion ‘method. In Sect.4, the effi-
ciency of the proposed method is shown by a numerical
example, and we will conclude in Sect. 5.

2. Moment Generation

Details of moment techniques in the AWE method are
described in [1] and [2]. In this article, our aim is
mainly how to obtain the moments of nonuniform trans-
mission lines. Then we will review briefly moment gen-
eration for MNA matrix equations of transmission line
systems.

Consider a linear circuit containing lumped com-
ponents and some uniform/nonuniform multiconductor
transmission line systems. Without loss of generality,
the frequency-domain MNA matrix Eq.[8] for the cir-
cuit can be written as [2]

Y(s)X(s) =E (1)
where Y(s) is a MNA matrix, X(s), E are an unknown
vector and input excitations, respectively. The ports re-

lation of the kth transmission line system in Y(s) is
described by

Ap(s)Vi(s) + B(s)I(s) =0 (2)

where Vi (s) and I (s) are the Laplace-domain terminal
voltage and currents of the kth transmission line system.
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To evaluate the moments of (1), we assume that the
coefficient matrices A(s), Bi(s) of (2) are described by
Taylor’s series at s = 0,

Ak (8) = Z Ak‘isi,

(3.a)
=0

Bk(s) = ZBk,iSi. (3b)
i=0

From (3.a), (3.b), the MNA matrix Y(s) is described
as follows:

Y(s) = ZYisi. (4)

=0

In the case of lumped components only, Y (s) becomes a
first degree polynomial matrix of s. The solutions X(s)
of (1) are also approximated by the Taylor’s series:

X(s) = ZMisi (5)
=0

where M, is the moment vector of X(s) [1]. Substitut-
ing (4) and (5) into (1)

(Yo +Y13+Y282+ )
(Mo +Ms+Mss® +---) = E. (6)

By matching the corresponding powers of s, the recur-
sive relationship for the moments can be derived in the
form

YoM, = E, (7.a)

YoM = - Y. M, (iz21). (7.b)
r=1

The moment generation on the MNA matrix
Eq. (1) is reduced to obtain the ports relation of the
transmission line system (2) and its Taylor’s series (3.a),
(3.b). In the case of uniform transmission lines, an
eigenvalue method [2] and matrix exponential method
[3] are reported to be efficient. However, if the circuit
contains the nonuniform transmission lines, the relation
cannot be obtained by only these methods. Thus a new
method for nonuniform transmission lines is proposed
in the next section.

3. Nonuniform Transmission Lines
3.1 Chebyshev Expansion Method

Consider a system of N transmission lines, where the
parameters per unit length are given by R(z), L(z),
C(z) and G(z) which have nonuniform and frequency-
independent characteristics and are expressed as func-
tions of a distance z from the input terminals. To ana-
lyze the system, a method using Chebyshev polynomials
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interpolation is reported in [7]. Due to tedious matrix
operation, this method seems to be complicated. Thus,
we reformulate it appropriately without loss of simplic-
ity and generality. Our derivation is essentially the same
as that proposed by Palusinski et al. [7] where the re-
sponses in the time-domain are assumed by Chebyshev
polynomials. However we assume the responses in the
Laplace-domain, making moment generation possible
for nonuniform transmission lines.

The Telegrapher’s equation in the Laplace-domain
is described in the form

4 [ Vi(s,2) ] — [f(2) + sh(z)] [ Vis,2) ] (8)

dz I(.S,Z) I(S,Z)
where
0 R(2)
f) = [ G(z) O ]

h(z) = [ o B ] |

First, z € [0,1] (I is a length of the lines) is converted
into z € [-1,1], because the Chebyshev polynomials
are defined in this interval. Using the transform

2

:c=7z—1, 9

the Telegrapher’s Eq. (8) is rewritten as

-2 [ M ] = L [£(2) + sh(z)] [ Mg ]

(10)
Below, the coefficient [/2 in the above equation has been

dropped for simplicity.
The voltage and current waveforms [V(s,z),

I(s,z)]” are modeled by N-1 degree Chebyshev poly-
nomials
V(s.2) N-1
[ I(SS’;) ] = Z DPm(8) cosmé (11
’ m=0

where the symbol 3’ denotes the summation with the
first component divided by 2, according to the notation
in [7]. Similarly, the derivatives with respect to spatial
variable x are described by

N-2

d V(S,JZ) _ —_— 5
£ Z s 0
where
N-1
Ph(s) = D kuk_mps (13)
k=m+1
| 2 (k-m: odd)
Uk-m =19 0 (k-m: even).
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Here the derivatives are N-2 degree Chebyshev polyno-
mials.

By substituting (11) and (12) into (10), and intro-
ducing an operator Py_»

N-2
- ZI p,.(s) cosmb
m=0
N—1
=Pn_2 x)+sh(z ZI pPi(s coskO}
k=0
N-2
= Z ©m(8) cosmb (14)
m=0

where Py _»> is an operator which expresses the Cheby-
shev polynomials discarding the terms of a higher order
than N-2. The coefficients ¢, (s) of (14) can be evalu-
ated by using the zeros of N degree Chebyshev polyno-
mial cos N@,

0i=2—22—+]\7,—1-7r (6=0,1,...,N—1), (15)
namely,
o N-1
om(s) = ~ [f(cos 8;) + sh(cosb;)]
=0
N-1
Z pi(s) cos k8; cosmb;
k=0
N-1
= {(Fetm + fjo—m))
k=0
+8(hietm + Bjgom)) } Pr(s) (16)
where
L Nl
NZfCOSQ)COS)O (0<j<N)
£ = i=0
Tlo =N
—fon—; (N+1<j <2N-3)
| N
¥ Z h(cos 6;) cos jb; (0<£j<N)
h: — =0
1o =N
—hav—;  (N+1<j<2N3).

The fast Fourier transform (FFT) or discrete Fourter
transform (DFT) are available for the computation of
f; and h;. As a boundary condition, we have

N-1
Vs, ) | _ ’
[ I(s,l) } = lg pk(S). 17

By matching the corresponding cosm8é (m = 0,1,...,
N — 2) of (14) and combining them with (17), the
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nonuniform transmission lines are described in terms
of the coefficients of the Chebyshev polynomial. It is
written in the matrix form

(D+F)+sH}P(s) = T, [ Vis.) ] (18)

I(s,l)
where
P(s) = ( Po P1 PN-1 )T
T,=(0 o u)’
I 0
o= %]

and T; € R*N’*2N and I € RV*YV js the identity ma-
trix. To simplify the notations of D, F, and H, the
following block matrix form of D is introduced:

Do,o Dy Do,n_1
Dy, Dii -+ Dino
D= ) ) ) )
Dy_10 Dwn-12 Dy_1,nv-1

F, H are described in the same manner. From (13), (16)
and (17), we have

,

0 (m+N-1,0<k<m)
Dok = 2kI'  (m % N-1, k-m: odd) (19)
0 (m % N-1, k-m: even)
| 0 (m = N-1)
£, (m %+ N-1, k = 0)
Py fiorm + fk—m| (m =+ N-1, k+0)
/2 (m=N-1, k= 0)
W (m = N-1, k + 0)
(20)
h,» (m & N-1, k =0)
Hok = { hypm + By (m 4+ N-1, E40)
L O (m = N-1)
(21
where I' € RZV>2N s the identity matrix.

The voltage and current waveforms at the input ter-
minal (z=0) are given by

N-1

V(s,0) !
[ I(s,0) } = ICZ:; (=1)*pi(s)
= T;P(s) (22)

where

T, = ( %I' = O (—N-L T )
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Combining (18) and (22), the nonuniform transmission
lines are expressed in the chain matrix form:

V(s,0 Vs,
[ o.0) ] = 20 [ Moy ] @3
where
@11 (1]
®(s) = [ ®2 QZ ]
= T, {(D+F)+sH} ' T;. (24)

Finally, by rearranging (23), the relationship (2) for the
nonuniform transmission lines is obtained by

o e [Ved ]

" [ 4 iéi ] [ Eg?;?;) ] =0. (29

3.2 Moment Computation

To evaluate the moments (7.a), (7.b), the coefficient ma-
trices of (25) must be expanded at s = 0, such as (3.a),

(3.b). Form (24), (25), it is attained by expanding
{(D+F)+sH}"!T; in (24) at s = 0:
{(D+F)+sH}7'T; = Y C/Tss'. (26)
=0
Put

{(D+F)+sH} (CO+Cls+0252+...) T, = T,.
(27)

By matching the corresponding powers of s, the recur-
sive relationship can be derived in the form

CoT1 = (D + F)—lTl, (283)

CT, = -(D+F)"'HC; 1T, (i=1). (28.b)
Then, the chain matrix ®(s) is described as

B(s) = > ToC/T;s'. (29)

=0
4. Numerical Example

To show the efficiency of our algorithm, we consider
a double line prototype chip interconnect shown in
Fig.1(a). The parameter matrices are listed in Table 2
of Ref.[7], and we assume that these matrices are piece-
wise linear in a distance z. The transient responses
to the input voltage shown in Fig.1(b) are computed
by using the proposed method, introducing the moment
matching technique [1]-[3]. For comparison with the
proposed method, these responses are also computed by
using the FFT method for the nonuniform transmission
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1
0.0 0.1 [ns]
(b)
Fig. 1 (a)Nonuniform transmission lines.(b)Input waveform.
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[nsec)

Fig. 2 Transient responses at the active line.

lines [9] and SPICE3 with the lumped model. In the
FFT method, calculating the time-domain response re-
quires convolution integral except for analyzing pulse
response [9]. The time step size of convolution inte-
gral is selected as (analysis time)/(2 * frequency com-
ponents). Waveforms in Figs.2 and 3 are respectively
active and quiescent lines responses at the far-end of
the transmission lines. The proposed method gets al-
most the same results as those of SPICE3 and the FFT
method (oscillations around 0.17 nano seconds in the
FFT’s results of Fig. 3 are Gibs phenomena). The CPU
time of each method on a Sun SPARK station 5 are
listed in Table 1. It is confirmed that the proposed
method provides high computational efficiency when
compared with the FFT method and SPICE3.

In spite of the great computational efficiency of the
proposed method, the waveform in Fig. 3 does not com-
pletely coincide with the results of the FFT method and
SPICE3. To consider how such inaccuracy of the pro-
posed method generates, the results are also compared
with the Chebyshev expansion method in the time-
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Fig. 3 Transient responses at the quiescent line.

Table 1 CPU time of numerical example.
[ Mehtod | Condition | CPU time [sec.] |
AWE order: 10
AWE(1) Chebyshev degree: 8 0.18
frequency components: 128
FFT line division number; 200 12.12
time step number: 2000
SPICE3 | {ine division number: 200 82.34
AWE order: 10
AWE(2) Chebyshev degree: 64 6.89
time step number: 2000
BDF(1) Chebyshev degree: 8 2.42
time step number: 2000
BDF(2) Chebyshev degree: 64 199.99

domain, Palusinski’s work [7]. Waveforms in Fig. 4 are
the responses computed by the proposed method with
different degree of the Chebyshev polynomials. Wave-
forms in Fig. 5 are the results in the time-domain, where
the Backward Differential Formula (BDF) [10] is used
as the solution of the ordinary differential equations of
which variables are coefficients of the Chebyshev poly-
nomials [7]. From Figs.4 and 5, we can see that the re-
sults by the proposed method with 8-degree Chebyshev
polynomials are the same with 64-degree, whereas the
results in time-domain with 64-degree are coincide with
SPICE3. The reason is that the AWE method extracts
only low frequency portions of a waveform, precisely,
the neighboring poles and residues of the function from
the origin s = 0, because the kernel of Taylor’s expan-
sion (3.a), (3.b) is the origin s = 0. The order of the
AWE method in the results of Fig.4 is fixed, and the
same poles and residues are found by the AWE method,
even if the degree of Chebyshev polynomial is differ-
ent. In other words, the inaccuracy shown in Fig.3 is
due to lack of the higher frequency components or the
moments. However, we cannot take more moments, be-
cause moment techniques are very sensitive to round-off
error. Such disadvantage of the AWE method has been
also suggested by other researchers [3]—[5], and they im-
proved it. In [3]-[5], the transfer function is expanded
at any point s = s, and a heuristic procedure so-called
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Fig. 4 Transient responses at the quiescent line computed by
the Chebyshev expansion in Laplace-domain (AWE).
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Fig. 5 Transient responses at the quiescent line computed by
the Chebyshev expansion method in time-domain (BDF).

complex frequency hopping in [3], a padé approxima-
tion via the Lanczos process in [4], a multipoint padé
approximation in [5] were introduced to take more mo-
ments. Fortunately, the method proposed in Sect. 3 can
be incorporated with these methods. Then, (24) is re-
placed with

T2 {(D+ F+ soH) + cH} ' T,

where ¢ = s — s9. ®(s) of (24) is expanded at s = sg
and described by a power series of o.

In general, the transfer function of the transmission
lines becomes complicated, increasing the frequency. It
implies that on the spatial space a few degree of Cheby-
shev polynomials are enough to approximate a Laplace
function in the region covered by the AWE method.
This is because the AWE method estimates only the
low frequency portions of the waveform. In the time-
domain method [7], the accuracy significantly depends
on the degree of Chebyshev polynomials, and the anal-
ysis with a few degree is no longer meaningful as shown
in Fig.5.

Therefore, extracting low frequency portions only
in the AWE method has advantage on the computa-
tional point of view, while the accuracy is degraded, be-
cause small degree Chebyshev polynomials imply small



1960

order matrices D, F, H of (18)
5. Conclusions and Remarks

We have presented an algorithm for calculating the
responses of nonuniform transmission lines with the
Chebyshev expansion method and moment techniques.
Our method is effective in achieving high speed compu-
tation.

Acknowledgment

The authors are grateful to Prof. Y. Shinohara at Toku-
shima University for his encouragement and comments.
This research was partly supported by the Hara Re-
search Foundation.

References

[1] L.T. Pillage and R.A. Rohper, “Asymptotic waveform
evaluation for timing analysis,” IEEE Trans. Computer-
Aided Design, vol.9, no.4, April 1990.

[2] T.K.Tangand M.S. Nakhla, “Analysis of high-speed VLSI
interconnects using the asymptotic waveform evaluation
technique,” IEEE Trans. Computer-Aided Design, vol.l1,
no.3, March 1992.

[3] E. Chiprout and M.S. Nakhla, “Analysis of interconnect
networks using complex frequency hopping (CFH),” IEEE
Trans. Computer-Aided Design, vol.14, no.2, Feb. 1995.

[4] P. Feldmann and R.W. Freund, “Efficient linear circuit
analysis by padé approximation via the lanczos process,”
IEEE Trans. Computer-Aided Design, vol.14, no.5, March
1995.

[5] M. Celik, O. Ocali, M.A. Tan, and A. Atalar, “Pole-zero
computation in microwave circuits using multipoint padé,
approximation” IEEE Trans. Circuits & Systs.-I, vol.42,
no.l, pp.6—13, Jan. 1995.

[6] M. Celik and A.C. Cangellaris “Efficient transient sim-
ulation of lossy packaging interconnects using moment-
matching techniques,” IEEE Trans. Comps., Pack., &
Manuf. Technol., Part-B, vol.19, no.l, pp.64-73, Feb. 1996.

[7] O.A. Palusinski and A. Lee, “Analysis of transients
in nonuniform and uniform multiconductor transmission
lines,” IEEE Trans. Microwave Theory & Tech., vol.37,
pp-127-138, Jan. 1989.

[8] C.W. Ho, A.E. Ruehli, and P.A. Brennan, “The modified
nodal approach to network analysis,” IEEE Trans. Circuits
& Systs., vol.CAS-22, pp.504-509, June 1975.

[9] Y. Tanji, Y. Nishio, and A. Ushida, “Analysis of nonuni-
form and nonlinear transmission lines via frequency-
domain technique,” IEICE Trans. Fundamentals, vol.E79-
A, n0.9, Sept. 1996.

[10] L.O. Chua and P-M. Lin, “Computer-Aided Analysis of
Electrical Circuits: Algorithms and Computational Tech-
niques,” Prentice-Hall, Inc., 1975.

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 10 OCTOBER 1997

Yuichi Tanji was born in Shizuoka,
Japan, on 1967. He received the B.E. and
M.E. degrees from Tokushima University,
Tokushima, Japan, in 1993, 1995, respec-
tively. He is currently working towards
the Ph.D. degree at the same university.
His research interest is in circuit simula-
tion. Mr. Tanji is a member of the IEEE.

Yoshifumi Nishio received the B.E.
and M.E. and Ph.D. degrees in Electrical
Engineering from Keio University, Yoko-
hama, Japan, in 1988, 1990 and 1993, re-
spectively. In 1993, he joined the Depart-
ment of Electrical and Electronic Engi-
neering at Tokushima University, Toku-
shima Japan, where he is currently an
Associate Professor. His research inter-
ests are in chaos and synchronization phe-
nomena in nonlinear circuits. Dr. Nishio
is a member of the 1EEE.

Akio Ushida received the B.E. and
M.E. degrees in electrical engineering
from Tokushima University in 1961 and
1966, respectively, and the Ph.D. degree
in electrical engineering from University
of Osaka Prefecture in 1974. He was an
associate professor from 1973 to 1980 at
Tokushima University. Since 1980 he has
been a Professor in the Department of
Electrical Engineering at the university.
From 1974 to 1975 he spent one year as
a visiting scholar at the Department of Electrical Engineering
and Computer Sciences at the University of California, Berke-
ley. His current research interests include numerical methods and
computer-aided analysis of nonlinear systems. Dr. Ushida is a
member of the IEEE.




