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SUMMARY In this study, we show how changing a frequency
in one of N chaotic circuits coupled by a resistor effects our sys-
tem by means of both circuit experiment and computer calcula-
tion. In these N chaotic circuits, N — 1 circuits are completely
identical, and the remaining one has altered the value of the os-
cillation frequency. It is found that for the case of N = 3 when a
value of a coupling resistor is gradually increased, only one cir-
cuit with different frequency exhibits bifurcation phenomena in-
cluding inverse period-doubling bifurcation, and for larger value
of coupling resistor, the chaotic circuit with different frequency
suddenly stops oscillating and the remaining two chaotic circuits
exhibit completely anti-phase synchronization.
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1. Introduction

Recently, studies concerned with synchronization of
chaos appearing in coupled chaotic circuits have been
drawing many researchers’ attentions. Also, studies con-
cerned with the collapse of synchronization of chaos
have been carried out[1]-[3]. However, not many stud-
ies concerned with coupled chaotic circuits with differ-
ent frequencies have been done. Coupled chaotic sys-
tems containing circuits with different frequencies can
be models of various phenomena existing in natural
field. So, it seems to be important to study how chang-
ing oscillation frequencies affects synchronization phe-
nomena of chaos in order to understand the phenomena
appearing in natural and real physical systems.

On the other hand, we have studied synchroniza-
tion phenomena appearing in a coupled system of van
der Pol oscillators with different frequencies, and have
reported that oscillation of an oscillator stops[4].

In this study, we investigate how changing a fre-
quency in one of N chaotic circuits coupled by a re-
sistor affects our system, by means of both circuit ex-
periment and computer calculation. By the way, for the
case that two chaotic circuits with different frequencies
are coupled, these two circuits will fight each other. As
the result, it will be seen either they do not synchro-
nize or they exhibit drawing phenomenon. So we do
not refer to this case. It was found that for the case of
N = 3 when a value of a coupling resistor is gradually
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increased, only one circuit with different frequency ex-
hibits bifurcation phenomena including inverse period-
doubling bifurcation, and for larger value of coupling
resistor, the chaotic circuit with different frequency sud-
denly stops oscillating and the remaining two chaotic
circuits exhibit completely anti-phase synchronization.
Further we found that by adjusting initial conditions
all circuits exhibit limit-cycle and two circuits exhibit
in-phase synchronization. Further, we also investigate
the case of N = 4.

2. Circuit Model

The circuit model is shown in Fig. 1. In our system, N
chaotic circuits are coupled by a resistor. Each chaotic
subcircuit is a symmetric version of the circuit model
proposed by Inaba[5] and consists of two inductors, a
capacitor, a negative linear resistor, and a nonlinear re-
sistor. Attractors observed from each circuit are shown
in Fig.2. In these N chaotic circuits, N — 1 circuits are
completely identical, and the remaining one has altered
values of capacitor and negative resistor, being C and
—7 respectively. We approximate the ¢ —v characteristics
of the nonlinear resistor as

’Ud(ik) = \Q/Tdik.

The equation governing the circuit in Fig.1 is repre-
sented as follows,

dly al
Ly—= = r(Ix +ix) = vk ~R> I

=1

Fig. 1 Circuit model.
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Fig. 2 Example of attractors. (a) symmetric chaos (e = 20, 8
= 0.29, v = 0.0), (b) asymmetric chaos (¢ = 20, 8 = 0.29, v
= 0.001).
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By changing the variables,

t=+I11Cr, I =V —C"‘xkv

L,
C
ikZV\/L—yk, v = Vg,
1
Ly C
~L—2, B=r L—17

/1 C d
— R . 13 . kil —_
Y Ll ’ dr ’

(1) 1s normalized as

N

&x = B(zr +Yk) — 2k —’YZ%’
=1

Uk = o{B(zr +yr) — 2 — fyr)}

2k = Tk + Yk (k=1,2,...,N-1)

N

in = Blan +yn) —an =7 Dz
i=1
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gn = afB(an +uyn) — 2v — flyn)}
iy = 8(zn + yn) 2
where
fw) = Vi, By, 6=

At first, we consider the case of C = 0.034 [uF] and
C = 0.068 [uF], that is to say the capacitor ratio is 2.0
(6 = 0.5). In this study, we concentrate on the effect
on the system due to the difference in the oscillation
frequencies, so we need to set the parameter B so that
the same attractors are produced as with 3. That is, the

following relationship needs to be realized;

jC . j2C
Ty — =Ty —.
L, L,

Then, parameter 3 is set as follows

s_a]C _ T [C_ B

From (2) and (3), we obtain;

N
ik=ﬁ($k+yk)—zk—’72%’
j=1
Uk = ofB(zk +yk) — zx — fyr)}
2k =Tk + Yk (k=1,2,...,N—1)

3 N
En = ﬁ(mN +Yn) - 2N —’Y;ﬂﬁj

Un = a{%(mg\] +yN) — 2N — f(yN)}

v =6(zn + yn). 4)

Strictly speaking, the function corresponding to the
diode characteristics f(yxn) also needs to be modified.
But it is difficult to modify it in the circuit experiment,
and it does not affect the characteristics of attractors
largely in comparison with the negative resistor because
of its switching operation. Therefore, we ignore the in-
fluence in this study.

3. Bifurcation Phenomena

At first, we consider the case of N = 3. By setting
the parameter 3 = 0.29, and changing the parameter
~ corresponding to the coupling resistor, attractors in
Fig. 3 were obtained by computer calculation. When a
value of a coupling resistor is gradually increased, at-
tractors change from Fig.3(a) to 3(f). At~y = 0.0 each
circuit exhibits symmetric chaos as in Fig. 2 (a) indepen-
dently. At~y = 0.01 (Fig. 3(b3)) the attractor observed
from the third circuit changes to asymmetric chaos as in
Fig.2 (b) from symmetric chaos. At v = 0.02 asymmet-
ric chaos changes to be almost one periodic Fig. 3(c3).



1326
x1-z1 x2-z2 x3-z3 x1-x2 x1-x3
()
0|0 ‘.
x1-z1 X272 x3-z3 x1-2 x1-x3
0] é <> *
x1-z1 -z2 X323 x1-x2 x1-x3
x1-z1 X2-22 X323 x1-x2
00|06 i}
x1-z1 x2-z2 x3-z3 x1-x2
(e) Ve )
x1-z1 x2-z2 x3-z3 x1-x2 x1-x3
@ ty
N\
2 2 2 2 1z
x1-z1 X222 x3-23 x1-x2 x1-x3
/N Jah 7N Q
& O NP4 0| {7 0 (7 0) 0 y
-2
= - -] . - -2

(1 @ (3) @ ()
Fig. 3 Result obtained from computer calculation (N = 3). «
=20,8=0296 =05, (a)y = 00,(b)y = 001, (c)y =
0.02, (d) v = 0.065, (e) v = 0.15, (f) v = 0.23, (g} v = 0.3, (1)

T1 Vs, 21, (2) 2 vs. 22, (3) 3 vs. 23, (4) 21 vs. z2, (5) 1 vs. x3.

At~y = 0.065 the attractor becomes symmetric again. At
v = 0.15 the attractor grows thicker due to the strong
effect of chaotic oscillations of z; and z3. Finally, at
v = 0.23 z3 stops oscillating. From Fig. 3 (5) we can see
that x3 is not synchronized to the others. From Fig. 3 (4)
we can see that x; and z, exhibit almost anti-phase syn-
chronization and that they are completely synchronized
after z3 stops oscillating. The one-periodic attractor in
Fig. 3 (g) will be explained later. We can also observe
these bifurcation phenomena from circuit experiment as
shown in Fig. 4.

We drew up one-parameter bifurcation diagram in
order to investigate three matters selectively; the first
is the behavior of z; on changing the coupling resistor
value, the second is the anti-phase synchronization of z;
and x4, and the third is the behavior of 3. The bifur-
cation diagrams are shown in Fig. 5. At first, let us note
the behavior of z3. Figs.5(c) and (d) show bifurcation
of 3 obtained by giving different initial conditions.
For 0.0 < v < 0.0015, the effect of the coupling resis-
tor is very small and we can observe symmetric attrac-
tor. At~y = 0.0015, z3 bifurcates to asymmetric chaos.
As « increases, the asymmetric chaos bifurcates to al-

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 7 JULY 1997

(4) (5)
Fig. 4 Attractors obtained from circuit experiment. L; =
204mH, L, = 10mH, C = 0.034uF, C = 0.068 uF, r = 7611,
7 =550, (a) R = 0Q,(b) R = 30Q, (c) R = 53Q, (A R

=161Q, (e) R = 3009, (f) R = 5009, (g) R = 7.68kQ, (1)
I vs. v1, (2) I vs. va, (3) I3 vs. v3, (4) I1 vs. I, (5) I vs. I3.

most one-periodic (around v = 0.025). For v > 0.0375,
symmetric attractor appears again. This scenario of bi-
furcation seems to be similar to the bifurcation route
observed typical circuits with symmetric structure (see
Fig. 11 in [5]). Because of the effect of chaotic oscilla-
tions of x; and zs, z3 could not show periodic behavior
clearly. But, we can conclude that the coupling resistor
plays a role to produce bifurcation phenomena of the
circuit with different oscillation frequency such as one
symmetric chaotic attractor — two asymmetric chaotic
attractors — (inverse period-doubling bifurcation) —
two asymmetric |-periodic attractors — one symmetric
1-periodic attractor.

As v increases further (y > 0.10), the coupling
effect of ;1 and z; becomes larger and x3 vibrates
strongly. Finally, for v > 0.21, z3 stops oscillating
suddenly.

Next, note the synchronization of z; and z5. From
Fig. 5 (b) we can see that anti-phase synchronization of
x; and x, becomes weak as vy increases. After x3 stops
oscillating, z; and x» exhibit complete anti-phase syn-
chronization.

4. Effect due to the Capacitor Ratio
In this section, we consider how changing the capacitor

ratio affects our system for the case of N = 3. The Bifur-
cation diagrams for the capacitor ratios 1.7 (6 = 0.59)
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Fig. 5 Bifurcation diagram for N =3. « = 20,8 = 0.29,6 =
0.5.

and 2.5 (§ = 0.4) are shown in Figs.6 and 7, respec-
tively.

Figs. 5, 6 and 7 show the change of -y at which oscil-
lating in the circuit with different oscillation frequency
stops. It was found that oscillation tends to stop if the
capacitor ratio is large. Moreover, as the capacitor ratio
increases (6 decreases), the vibration of z; + z, seems
to become larger.

5. Coexistence of One-Periodic Attractor

The bifurcation diagrams Figs. 5, 6 and 7 are obtained
by giving small initial conditions (z3(0),y3(0), z3(0))
= (0.001,0.001,0.001). The bifurcation diagram of =,
obtained by giving relatively large values of initial con-
ditions (z3(0),y3(0), 23(0)) = (1.0,1.0,1.0) is shown in
Fig.8. Up to v = 0.218 we can observe the same bi-
furcation phenomena for both of large and small initial
conditions. However, when the value of v is gradually
increased past 0.218, all circuits exhibit limit-cycle for
the case of relatively large initial conditions. Moreover,
two circuits exhibit in-phase synchronization. For this
case, the attractors obtained from computer calculation
are shown in Fig. 3 (g), and the attractors obtained from
circuit experiment are shown in Fig.4(g). We cannot
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Fig. 6 Bifurcation diagram for different capacitor ratio. o =
20,3 = 0.29,6 = 0.59.
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Fig. 7 Bifurcation diagram for different capacitor ratio. a =
20,8 = 0.29,6 = 04.

explain physically why such a synchronization appears.
However, we consider that this result would indicates
systems including oscillators with different oscillation
frequencies can produce various unknown synchroniza-
tion phenomena.

6. Bifurcation Phenomena for N = 4

In this section, we consider the case of N = 4.
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Fig. 8 Bifurcation diagram with relatively large initial condi-
tions. a = 20,8 = 0.29,6 = 0.5.

(b)

il

0.0 0.05 0.10 0.15 0.20 i 0.25

Fig. 9 Bifurcation diagram for N =4. o = 20,8 = 0.29,6 =
0.5.

Similarly to the case of N = 3, setting the param-
eter 3 = 0.29, we analyzed our system. One parame-
ter bifurcation diagrams are shown in Fig.9. When a
coupling resistor value is small, inverse period-doubling
bifurcation of the circuit with different oscillation fre-
quency can be seen. Also from Figs. 10(a), 11(a) and
12(a), we can see that the remaining three circuits ex-
hibit almost three-phase synchronization. If the cou-
pling resistor value is increased further, the coupling
effect of z1, o and x3 becomes larger and z, vibrates
strongly. As v increases further (0.164 < v < 0.189),
phenomena of stopping oscillating which can be seen
for the case of N = 3 can not be seen for this case,
but the amplitude of the attractor with different fre-
quency becomes very small. From Figs. 10(b), 11(b)
and 12 (b), we can see that the vibration of three-phase
synchronization also becomes small in comparison with
Fig. (a). Beyond v = 0.189, irregular self-switching phe-
nomenon of the attractor with small amplitude and one
with large amplitude is observed as shown in Figs. 10(c)
and 11(c). In this case, remaining three circuits cannot
be synchronized.
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Fig. 10 Result obtained from computer calculation (N = 4).
a=120,08=02946 =05 (a)y =005 (b)y =018 (c)y =

0.23, (1) 24 vs. 21, (2) 1 vs. T2, (3) x1 vs. x3, (4) 1 vs. 4.
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Fig. 11  Attractors obtained from circuit experiment for N = 4.
Ly = 204mH, L; = 10mH, C = 0.034uF, ¢ = 0.068uF, r =
7618, 7 = 5568, (a) R = 1209, (b) R = 2829, (c) R = 3414,
(1) I4 vs. vq, (2) Iy vs. Iz, (3) I vs. I3, (4) I vs. I4.

8] @

7. Conclusion

In this study, we investigated how changing a frequency
in one of N chaotic circuits coupled by a resistor af-
fects our system, by means of both circuit experiment
and computer calculation. It was found that for the
case of N = 3 when a value of a coupling resistor is
gradually increased, only one circuit with different fre-
quency exhibits bifurcation phenomena including in-
verse period-doubling bifurcation, and for larger value
of coupling resistor, the chaotic circuit with different
frequency suddenly stops oscillating and the remaining
two chaotic circuits exhibit completely anti-phase syn-
chronization. Further, we also investigated the case of
N =4.

In our previous study, we have studied a coupled
system with van der Pol oscillators with different fre-
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(a)

(b)

Fig. 12 Time waveform for N = 4. L; = 204mH, L, =
10mH, C = 0.034uF, C = 0.068uF, r = 761Q, # = 5565, (a)
R = 1209, (b) R = 282Q.

quencies, and have reported that oscillation of only the
oscillator with different frequency stops[4]. From these
studies, we can conclude that strength of the coupling
resistor will mostly affect the circuit with different os-
cillation frequency.
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