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SUMMARY In this paper, we investigate bifurcation phenom-
ena observed from two autonomous three-dimensional chaotic
circuits coupled by an inductor. Two types of synchronization
modes are observed in this coupled system, i.e., in-phase syn-
chronization and anti-phase synchronization. For the purpose
of detailed analysis, we consider the case that the diodes in the
subcircuits are assumed to operate as ideal switches. In this case
Poincaré map is derived as a three-dimensional map, and Lya-
punov exponents can be calculated by using exact solutions. Var-
ious bifurcation phenomena related with chaos synchronization
are clarified. We confirm that various bifurcation phenomena are
observed from circuit experiments.

key words: chaos, synchronization of chaos, bifurcation, break-
down of chaos synchronization, hyperchaos

1. Introduction

Many nonlinear dynamical systems in various fields
have been confirmed to exhibit chaotic oscillations.
Recently applications of chaos to engineering systems
are expected such as chaos noise generators, control of
chaos, synchronization of chaos, and so on. In those ap-
plications, we are especially interested in synchroniza-
tion of chaos. As far as we know, synchronization of
chaos in a simple circuit was first reported by Saito et
al.[1]. Since Pecora et al.[2] clarified such phenom-
ena, a large number of studies on synchronization of
chaos have been reported. However, the study on bifur-
cation of chaos synchronization has been started only
recently [3]-[7]. Therefore, there remain a large num-
ber of unsolved problems related with bifurcation of
synchronization of chaos.

In this paper, we investigate bifurcation phenom-
ena observed from two autonomous three-dimensional
chaotic circuits coupled by an inductor. This subcir-
cuit is a simple chaotic circuit proposed by Inaba et
al.[8]. Two types of synchronization modes are ob-
served in this coupled system; namely in-phase synchro-
nization and anti-phase synchronization. Throughout
this paper we use the word “chaos synchronization”
as follows. Two continuous time chaotic signals Sy (t)
and Sy(t) are said to be synchronized completely at in-
phase, if fli)1£10|51(t) — S5(t)] = 0 (or at anti-phase

if tlim |S1(¢) + S2(t)] = 0). While two chaotic sig-
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nals S;(t) and Sy(t) are said to be synchronized in-
completely, if |S1(t) + So(t)| < e, where the constant
e (#0) is much smaller than the average amplitude of
each chaotic signal. (The latter is not mathematical def-
inition and is used only for qualitative explanation of
the observed phenomena.) This system is a two subcir-
cuit case of a coupled system in Ref[6]. However, in
Ref[6], we did not analyze this circuit with the exact
solutions in detail. Therefore, we will analyze various
phenomena on this system in detail with the exact so-
lution, especially paying attention to bifurcation route
in each synchronization mode. For the purpose of de-
tailed analysis, we consider the case that diodes in the
subcircuits are assumed to operate as ideal switches. In
this case the circuit equation in a piecewise linear re-
gion can be degenerated to a four-dimensional equa-
tion. Therefore, the associated Poincaré map is derived
as three-dimensional map exactly using the analytical
solutions. We can also calculate Lyapunov exponents
from the Jacobian matrix obtained from the Poincaré
map, This simplified technique was firstly reported by
Inaba et al.[9] and was confirmed to be extremely effec-
tive in analyzing chaotic phenomena in dissipative elec-
trical circuits. Further, this technique was extended to
higher-dimensional circuits[10] and to circuits includ-
ing two diodes[11]. However, it has not been applied
for the analysis of chaos synchronization in coupled
chaotic circuits. By calculating Lyapunov exponents,
various bifurcation phenomena of chaos synchroniza-
tion are clarified. Further, computer calculation results
are confirmed by circuit experiments.

2. Circuit Model

The circuit model used in this study is shown in Fig. 1.
In our system, two identical chaotic circuits which are
simple chaotic subcircuits proposed by Inaba et al. [5]
are coupled by an inductor Ly. This subcircuit is one
of the simplest autonomous chaotic circuits consisting
of only three memory elements, one linear negative re-
sistor, and one diode.

At first, we approximate the characteristics of each
diode by the following two-segment piecewise linear

functions as in Fig.2(a):
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Fig. 2 Diode model.

where k = 1,2. By changing the variables and parame-

ters,
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the normalized circuit equations are described by six-
dimensional piecewise linear differential equations as
follows:

T = 2z

o = Blzx — flyr))

Zy = (—1)'“01(301 —xz9) —(xp+yr) +vze (3)
f(yk)=%{6yk+1_|6yk—1|} (4)

where £ = 1,2. The f(yg) is a piecewise linear function
of yi corresponding to the characteristic of the diode.
We can calculate attractors by using the exact solution
of Eq.(3). However, because it is hard to give rigorous
representation of the Poincaré map and its Jacobian ma-
trix, Lyapunov exponents cannot be calculated easily.

In order to calculate Lyapunov exponents by using
exact solution, we consider the case that the diodes in
the circuit are assumed to operate as ideal switches as
shown in Fig. 2 (b). When this simplified model is used,
the circuit equation is degenerated for the OFF state of
the diodes. Because the current through the diode i1
is constrained to zero when the diode is OFF. Hence,
when both diodes are OFF states, the circuit equation
is degenerated to four-dimensional equation. It enables
us to derive three-dimensional Poincaré map.
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The circuit Eq.(3) is rewritten by using the diode
model in Fig.2 (b) as follows.

LT = Zg
yr =0 (OFF state)
Y o { Ur = B(zx —1) (ON state)
% = (-D*a(z1 — 22) = (Tk + v) + 72 (5)
where k = 1,2. We define four piecewise linear regions
as follows.

D,;; --- both diodes are ON states.
Djo --- only right diode is OFF state.
Dg; --- only left diode is OFF state.
Dgy --- both diodes are OFF states.

The eigen-equation in each region is as follows.

< Dy >

m*{m* - 2ym3 + 2(a + B+ 1)m? —2v(a + B+ 1)m +
(2a+8+1)(B+1)} =0

< Djg >:

m{m* —2ym3+ (2a + B++* +2)m? —y(2a + B+ 2)m +
(aB+2a+8+1)} =0

< Do; >:

m{m* —2ym3 + (2a +B++* +2)m? —y(2a+ B+ 2)m +
(aB+2a+3+1)}=0

< Dog >:

m*=2ym*+ (2a+72+2)m? —2y(a+1)m+(2a+1) =0
The eigenvalues in each region are described as follows.

D ¢ w01 £ 1wi, 1102 £11w2, 0,0
Dio : 1001 £ 10w1, 1002 £ 10w2, O
Do : 0101 £01wi1, 0102 £ o1w2, 0
Doo : 0001 % cow1, 0002 £ gows
The exact solution in Dg; derived from Eq. (5) is rep-

resented by using matrix as Eq.(6). x19 ~ 22 are the
initial conditions:

z1(7)
2(7) = rrraTT
z2(7) + aﬁ+2€]+ﬂ+1
w(7) = aAharie
22(7) = aptaataTT

T10

af
F10 ~ GBT2a+A+1

_ y
=Fo1(7) - F3;(0) T20 + agﬁfﬁi’iirl + Aot
Y20 ~ GBr2aTA+T
(1+a)
#20 T aB+2a+pB11
(6)

where

Foi(r) = [fi(r) £2(7) fa(r) fu(r) £5()]7,
€077 cosgy W1 T T
€917 singy w1 T
€°1927 cosgy WaT ,
€927 gingy waT

0

fQ(T) =
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Fig. 3 In-phase synchronization (computer calculation). a =
0.60, 3 = 6.0. v : (a) 0.050, (b) 0.100, (c) 0.150, (d) 0.180, (¢)
0.235, (f) 0.280. (1) 21 vs. z2. (2) z1 vs. 1. (3) 22 vs. x2.
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Fig. 4 In-phase synchronization (circuit experiment). Lo =
1103mH, L; = 57.6mH £ 0.1%, L, = 10.2mH £+ 0.1%, C =
68.3nF £+ 0.1%. (a) r=2.19kQ, (b) r=2.15k$, (¢) r=2.09kQ, (d)
r=1.87k€, (e) r=1.74kQ. (1) vivs.va, Horizontal and Vertical:
0.5 V/div, (2} vivsip,,, (3) vavs.iy,,, Horizontal: 0.5V/div,
Vertical: 0.5mA /div.
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We can similarly derive the exact solutions of other re-
gions.

Figures 3 and 7 show chaotic attractors obtained by
computer calculation. The two different synchroniza-
tion modes coexist in this circuit and we can produce
one of two modes by inputting a certain initial condi-
tions. We will explain bifurcation phenomena of the
two types of synchronizations in detail in later section.
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3. Poincaré Map

In order to investigate the bifurcation route in detail,
we consider the Poincaré map. We define the Poincaré
section in the four-dimensional region Dgg where both
diodes are in the OFF state. In this case, the Poincaré
map T can be derived as a three-dimensional map.

At first, we define the Poincaré section as

S: (m=y2=0,21=1,20<1)
U(y1 =y2=0,21 < 1,29 = 1).

This Poincaré section corresponds to the transitional
condition from the four-dimensional subspace Dgg to
Dy; or Dyg. Poincaré map T is represented by a com-
posite map of some submaps which transform a point
entering a subspace to a point exiting the subspace.
Each submap can be represented by using the exact so-
lution of Eq. (6). As an example, the submap Ta which
transforms a point entering Dg; from Dy to a point
exiting to Dy is given by using the following equation.
Then we defined that its route was A.

X11-0
1— 28
aﬂ+2agﬂ+1
Y
Xo1 + GpraararL
Yo — 26v(1+a)
21 7 GBF2at+B+1
o1 — B(l+a)
217 afF2atp+1
Xi0—-0
10 aﬁ+2§+5+1
- Y
= FOI(TA) . F011 (0) . XZO + 357%1_’_1)3_‘,1 +A7'A
Y «
0- aB20+B+1
1— B(1+a)
af+2a+pB+1
)]

where the initial point in Doy is (21, ¥1, 21, Z2, Y2, 22)
= (X10, 0, Z10, X920, 0, 1), the point on the transitional
condition from D01 to Dll is (X].].a 0, ], X21, Yzl, Z21)
and 74 is a transition time. Combination of submaps
is determined by the route of the solution.

The Jacobian matrix DT of the Poincaré map T
can be also derived rigorously as a product of some Ja-
cobian matrices of the submaps. For example, Jacobian
matrix of the submap T in Eq.(7) can be given as

0

- 21

-+ X1i+aXa+y 1

_ B(Z21-1) 0
—(+a)Xui4+aXa1+y

_aXi—(+a) X Y1 +vZn 0
—(I+a)X11+aXa1 4+~

10

1
—(1+01)XZ11+C¢X21+’Y

DTp =

o O O =
(= = =]
= o O O

For(ra) - Fo1' (0) - (8)

oo o0
OO O =
OO OO
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4. In-Phase Synchronization

In this section, we investigate the in-phase synchroniza-
tion. Computer calculated results and the correspond-
ing circuit experimental results are shown in Figs.3
and 4, respectively. Fig.3(a) shows in-phase synchro-
nization of one-periodic attractors. As parameter v in-
creases, one-periodic attractor bifurcates to chaotic at-
tractor via period-doubling route keeping in-phase syn-
chronization. We can see that two circuits are synchro-
nized completely at in-phase in spite of chaotic oscil-
lations such as Fig.3(c). For these parameter values,
the attractors are split to two bands by an unstable or-
bit. As v increases, two bands of the chaotic attrac-
tor merges to one band and the attractor contains the
unstable orbit. At the same time, chaos synchroniza-
tion becomes incomplete as shown in Fig.3(d) (also
see Fig.5(e)).POFS It seems that the unstable orbit
is deeply related to the breakdown of chaos synchro-
nization. The detailed investigation of the influence
is our important future research objective. As v in-
creases further, in-phase synchronization becomes un-
stable and only anti-phase synchronization is observed
as in Fig. 3(f).

The Poincaré map and its bifurcation diagram are
shown in Figs. 5 and 6, respectively. We can verify the
bifurcation route via period-doubling and breakdown
of chaos synchronization.

Calculated Lyapunov exponents are shown in
Fig.7. We can see that the hyperchaos appears for the
value of v 2 0.170. It just corresponds to breakdown of
in-phase synchronization of chaotic attractors. Namely,
we can confirm for real circuit model that breakdown
of chaos synchronization causes the generation of hy-
perchaos[4]. Further, we confirmed that for in-phase

0.3 0.3, 0.3

/ /
/ /

-1.8 -1.8l -1.8
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-1.8 0.3 -1.8 -0.3 -1.8 0.3
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Fig. 5 Poincaré map of in-phase synchronization. Horizontal:
z1. Vertical: z2. @ =0.60. 3 =6.0. v : (a) 0.125, (b) 0.150, (c)
0.160, (d) 0.175, (e) 0.180, (f) 0.190.
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Fig. 6 Bifurcation diagram for the in-phase synchronization. «
=0.60. 3 =6.0. (a) Horizontal: ~, Vertical: z;. (b) Horizontal:
~, Vertical: =1 — x2.
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Fig. 7 Lyapunov exponents of the in-phase synchronization.

synchronization hyperchaos with 3 positive Lyapunov
exponents does not appear.

5. Anti-Phase Synchronization

In this section, we investigate the anti-phase synchro-
nization. Note that in-phase synchronizations and anti-
phase synchronizations coexist in our circuit model. In
the anti-phase synchronization mode, chaotic subcir-
cuits cannot be synchronized completely, because the
characteristics of the diode are not symmetric with re-
spect to the origin.

Computer calculation results and the correspond-
ing circuit experiments are shown in Figs. 8 and 9, re-
spectively. We can see that one-periodic attractors of
two circuits are synchronized at anti-phase completely
as shown in Fig.8(a). However, we cannot see the
complete synchronization for v > 0.08. Because the
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Fig. 8 Anti-phase synchronization (computer calculation). «
=0.60, 3 =6.0. v : (a) 0.050, (b) 0.100, (c) 0.140, (d) 0.180, (e)
0.200, (f) 0.320. (1) z1 vs. z2. (2) 21 vs. z1. (3) 22 vs. z2.

attractor bifurcates to asymmetric one. The asymmetric
one-periodic attractor (b) bifurcates to torus (c). As in-
creasing parameter vy, the asymmetric chaotic attractor
appears as shown in Fig. 8 (d). As~ is increased further,
the symmetric chaotic attractor in Fig. 8 (e) appears. Fi-
nally, the anti-phase synchronization also becomes un-
stable and self-switching phenomenon of in-phase and
anti-phase is observed as shown in Fig. 8 (f).

The Poincaré map and its bifurcation diagram are
shown in Figs.10 and 11, respectively. We can verify
the bifurcation route via Hopf bifurcation. We can see
that one-periodic attractor (a), bifurcates to torus (b),
(¢) and (d), and also observe torus breaks down and
chaos appears (e).

Calculated results of Lyapunov exponents are
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Fig. 9 Anti-phase synchronization (circuit experiment). Ly =
110.3mH, Ly = 57.6mH £ 0.1%, Ly = 10.2mH £ 0.1%, C =
68.3nF £+ 0.1%. (a) r=35.00k2, (b) r=2.19k, (c) r=2.05k$2, (d)
r=1.96 kR, (e) r=1.87kQ, (f) r=1.46k2. (1) v,vs.vo, Horizontal
and Vertical: 0.5 V/div, (2) vivs.ir,,, (3) vavs.ir,,, Horizontal:
0.5V/div, Vertical: 0.5mA /div.

shown in Fig.12. We can classify characteristics of
chaos as follows. The attractors for 0.130 < v < 0.155
are classified to torus, because the largest Lyapunov ex-
ponent A; is equal to 0. While the parameter v is be-
tween 0.160 and 0.165, and larger than 0.170, the at-
tractors are chaos because A; is larger than 0. We can
classify that the attractors in Fig. 10 (h) and (i) are area-
expanding chaos and that the attractors in Fig. 10(j)
and (k) are volume-expanding chaos. Further, we can
also confirm that hyperchaos with three positive Lya-
punov exponents exists at v > 0.260. Namely, we
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Fig. 10  Poincaré map of anti-phase synchronization. Horizon-
tal: z;. Vertical: x2. a =0.60. 3 =6.0. v : (a) 0.125, (b) 0.140,
(c) 0.147, (d) 0.155, (e) 0.160, (f) 0.165, (g) 0.172, (h) 0.175, (i)
0.180, (j) 0.200, (k) 0.235.
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Fig. 11  Bifurcation diagram for the anti-phase synchronization.
a =0.60. Horizontal: v, Vertical: z;.

have found that anti-phase quasi-synchronization bifur-
cates from one-periodic attractor to hyperchaos with
three positive Lyapunov exponents. Furthermore, at
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Fig. 12 Lyapunov exponents of the anti-phase synchronization.

~ > 0.320 we observed self-switching phenomena, how-
ever, we found that it has no large extra change.

6. Conclusions

In this paper, we have investigated two types of syn-
chronization modes of in-phase and anti-phase observed
from simple chaotic circuits coupled by an inductor.
From circuit experiments and computer calculations, we
have clarified the bifurcation route of two types of syn-
chronization modes. From Lyapunov exponents calcu-
lated by using exact solutions, various bifurcation phe-
nomena have been clarified.

To analyze other coupled systems by using this
technique, e.g. two chaotic circuits coupled by a capac-
itor or some chaotic circuits coupled as a chain, is our
future research objective.
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