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SUMMARY When N oscillators are coupled by one resis-
tor, we can see N-phase oscillation, because the system tends to
minimize the current through the coupling resistor. Moreover,
when the hard oscillators are coupled, we cansee N, N — 1, - -,
3, 2-phase oscillation and get much more phase states. In this
study, the two types of coupled oscillators networks with third
and fifth-power nonlinear characteristics are proposed. One net-
work has two-dimensional hexagonal structure and the other has
two-dimensional lattice structure. In the hexagonal circuit, adja-
cent three oscillators are coupled by one coupling resistor. On
the other hand, in the lattice circuit, four oscillators are coupled
by one coupling resistor. In this paper we confirm the phenom-
ena seen in the proposed networks by circuit experiments and
numerical calculations. In the system with third-power nonlin-
ear characteristics, we can see the phase patterns based on 3-phase
oscillation in the hexagonal circuit, and based on anti-phase os-
cillation in lattice circuit. In the system with fifth-power nonlin-
ear characteristics, we can see the phase patterns based on 3-phase
and anti-phase oscillation in both hexagonal and lattice circuits.
In particular, in these networks, we can see not only the syn-
chronization based on 3-phase and anti-phase oscillation but the
synchronization which is not based on 3-phase and anti-phase
oscillation. As a result, these networks are expected to generate
various synchronization patterns. In these networks, each oscil-
lator is connected to only its adjacent oscillators and various
patterns are generated according to the initial condition. There-
fore, we can consider that we can use these networks as a kind
of cellular neural networks.

key words: coupled oscillators, hexagonal circuit, lattice circuit,
cellular neural network

1. Introduction

There have been many investigations of mutual syn-
chronization and multimode oscillation of coupled os-
cillators ([1]-[9] and therein). In Refs.[1]-[4], Endo
et al. have reported the multimode oscillations in the
various types of the coupled oscillators networks. In
Refs. [5]-[9] the researches about the synchronization
in resistively coupled oscillators have been reported. In
particular, we have reported synchronization phenom-
ena observed from N oscillators with the same natural
frequency mutually coupled by one resistor as shown
in Fig.1[7]. In the system, various synchronization
phenomena can be observed because the system tends
to minimize the current through the coupling resistor.
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Especially, we have confirmed experimentally that N-
phase oscillation can be stably excited ‘when each os-
cillator has strong nonlinearity. In this case, there exist
(N —1)! phase states. Because of the coupling structure -
and extremely large number of steady states of the sys-
tem in Fig. 1, this system would be a structural element
of the cellular neural network [8].

Moreover, we have investigated the synchronization
phenomena in N oscillators with fifth-power nonlin-
ear characteristics coupled by one resistor [8],[9]. Be-
cause an oscillator with fifth-power nonlinear charac-
teristics exhibits hard oscillation, we can keep arbi-
trary number of oscillations to be stationary. There-
fore, we can get not only N-phase oscillation but also
N —1,N — 2,---,2-phase oscillation. As a result, we
can get much more phase states than that of the system
with third-power nonlinear characteristics.

On the other hand, recently many researches of
the networks of the nonlinear elements have been re-
ported [ 10]—{12], because they are important not only
as a model for nonlinear systems but from the viewpoint
of biological information processing and possible engi-
neering applications. In Ref.[10] Chua et al. have pro-
posed the network of the sparsely interconnected non-
linear elements called cellular neural network (CNN).
CNN has two major features; continuous time feature
allowing real-time signal processing and local intercon-
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Fig. 1 Oscillators coupled by one resistor.
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nection feature making it tailor made for VLSI imple-
mentation. And various applications for image process-
ing and pattern recognition of cellular neural networks
have been reported. And in Ref.[11], neural network
using a van der Pol oscillator as a neuron has been
proposed by Endo et al. This system has the advan-
tage that no simulated annealing is needed to achieve
good convergence to an optimum solution, because the
static characteristics of the van der Pol oscillators are
completely binary and the dynamic characteristics are
continuous and smooth. Moreover, it achieves fast con-
vergence. In Ref.[12], Kaneko has suggested the possi-
bility of the information processing using the network
of the nonlinear elements by investigating the globally
coupled chaotic elements from various aspects.

In this study, we propose two types of networks of
coupled oscillators with third and fifth-power nonlin-
ear characteristics. One network has two-dimensional
hexagonal structure and the other has two-dimensional
lattice structure. In the hexagonal circuits, three oscilla-
tors are coupled by one coupling resistor. On the other
hand, in the lattice circuits, four oscillators are cou-
pled by one coupling resistor. In the system with third-
power nonlinear characteristics, we predict that we can
see the phase patterns based on 3-phase oscillation in
the hexagonal circuit and based on anti-phase oscilla-
tion in lattice circuit. In the system with fifth-power
nonlinear characteristics, we predict that we can see the
phase patterns based on 3-phase and anti-phase oscilla-
tion in both hexagonal and lattice circuits. Therefore,
in these networks, we can get many different synchro-
nization patterns by changing the initial states and each
oscillator is connected to only its adjacent oscillators.
So we can consider that we can use these networks as
some kinds of cellular neural networks.

In this paper, we show the proposed networks mod-
els in Sect.2 and we carry out circuit experiments and
numerical calculation, and investigate the relation be-
tween the initial condition and synchronization patterns
in Sect. 3. Section 4 is the conclusions.

2. Networks Models and Circuit Equations

The networks models are shown in Figs.2 and 3. In the
hexagonal circuit shown in Fig. 2, three oscillators are
coupled by one coupling resistor. The shape of the net-
work should be an equilateral triangle (see Fig. 4 (a)).
When the number of oscillators on one side of the equi-
lateral triangle is N, we call this network size is N. If
the network size is IV, the number of oscillators in the
network is N(N + 1)/2. Similarly, in the lattice circuit
shown in Fig. 3, four oscillators are coupled by one cou-
pling resistor. In this case we can construct the N x M
network, but for simplicity we pay attention to N x N
square networks, so the networks have N2 oscillators
(see Fig.4(b)). The v-i characteristics of each nonlin-
ear resistor are approximated by third or fifth-power
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Fig. 3 Coupled oscillators network (lattice circuit).

Oscl Osc2 Osc3 Osc1 Osc2 Osc3

Oscé Osc5 Osc4 OscS5 Osc6
Osc 6 Osc7T Osc8 Osc9
(a) (b)

Fig. 4 (a) Size 3 hexagonal circuit. (b) 3x3 lattice circuit.

equation. In these networks, the circuit equations are
described as follows,

d’U}c . .
Ckﬁ = — Z Zij t zr(vk)
L,;€NL(k)
diyy .
Li— =ve — R > iy (1
Li;€ENR(kl)
(k=1,2,---,K, 1l=1,---,3 or 4,
m=1,2,---,M)
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where

—g1Vk + g3ui®
(third-power
nonlinear chracteristics)

3 _ 2
e (i) 910k — g3Uk> + gsvk® (2)
(fifth-power
nonlinear chracteristics)
and Ny (k) and Ng(m) are defined as
Np(k) = {L;;| inductances L;; connected
to oscillator k} (3)
Ngr(m) = {L;;| inductances L;; connected
to resistor R, } 4)
and
N(N +1)/2
in the hexagonal circuits.
K={ e : )
(in the lattice circuits.)
N(N-1)/2
_ (in the hexagonal circuits.)
M=3 T (6)

(in the lattice circuits.)

Because each oscillator has the same natural fre-

quency, we take Ry = Ro = =R, =Ry =R,
012022 —CN C’andLu—Lu— =Ll‘j=
coe= L.

When the nonlinearity is the third-power, by chang-
ing variables,

dz
LCT E,
C
k—\/ kl=ﬂfggl3ykl, (7N
E=0 C,

the normalized circuit equations are described as fol-
lows

3
Ep = — Z yij+5(1'k_%)
Li;ENL(k)
Ukl = Tk — Qi Z Yij (8)
L;;ENRg(kl)
(k=1,2,---,K, l=1,---,3 or4,
m=1,2,---,M)

and a,, = R,,«/C/L'. « is coupling factor and ¢ is the
strength of nonlinearity.

When the nonlinearity is the fifth-power and R; =
Ry=:-=R, = ‘:RM—Rcl sz...=
CN=CandL11=L12="—L —-L,by
changing variables,
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ICr, d’”

Vg = ,/ :Bk, et =4/ — w/595ykla (9)
393 91 —y /L
5g5 ! C’

the normalized circuit equations are described as fol-

lows
Ty = — Z Yij

LijENL(k)

1 1
—€ (xk - §ﬁ$k3 + g$k5>

10
U =Th—0m Y Ui (1o
Li;€NR(kD)
(k=12 K, l=1,---,
m=1,2,--, M)

3 or 4,

where a,,, = R,,1/C/L as in the case of the third-power
nonlinear characteristics. « is coupling factor and ¢ is
the strength of nonlinearity. The amplitudes of oscilla-
tors with hard nonlinear characteristics depend on 5.

3. Experimental and Numerical Results

In this section we show experimental and numerical re-
sults observed from the proposed oscillators networks
and investigate the relation between the initial states
and the phase patterns.

3.1 Synchronization in Oscillators Networks

3.1.1 Synchronization in the System with Third-Power
Nonlinear Characteristics

In the networks with the third-power nonlinear charac-
teristics each oscillator is excited because of the negative
slope of the nonlinear characteristics[8]. The negative
resistance with the third-power nonlinear characteristics
is realized by the circuit shown in Fig.5(a) and its v~
characteristics are shown in Fig. 6 (a). On computer cal-
culation, in order to consider the difference between the
natural frequencies of the oscillators, Eq. (8) is rewritten

as follows.
. T3
== T wre(n- )
L,‘jENL(k)

U= (14 Awp)Te —am Y Uy (1)
Li;€Ng(kl)

Awg = (k—1) x 1073

(k=1,2,---,K, l=1,---,30r4,

m:1727“'7M)

where Awy, correspond to the difference between the nat-
ural oscillating frequency of the reference oscillator and

T —ap = —am = = am =
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Fig. 5 Construction of oscillator with (a) third-power nonlin-
ear characteristics and (b) fifth-power nonlinear characteristics.
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Fig. 6 v-i characteristics of (a) third-power nonlinear charac-
teristics and (b) fifth-power nonlinear characteristics.

those of the other oscillators and are derived from the
conditions on the circuit experiments. In the following
results, the notations A—O mean the phase states of the
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Fig. 8 Numerical results in hexagonal circuits with the
third-power nonlinear characteristics when the network size is
3ord4 (a¢=4.0,¢=1.5).

oscillators as shown in Fig.7.

In the hexagonal circuit with third-power nonlin-
ear characteristics, three oscillators are coupled by one
coupling resistor. When 3 oscillators are coupled by
one resistor, the system tends to minimize the current
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through the coupling resistor by minimizing the sum
of the voltages of the oscillators and these oscillators
exhibit 3-phase oscillation{[7],{9]. So in the hexago-
nal circuit with third-power nonlinear characteristics we
can predict that we can see the synchronization based
on 3-phase oscillation. To confirm those phenomena we
carried out both circuit experiments and numerical cal-
culations. Figure 8 shows the numerical results in the
hexagonal circuits with third-power nonlinear charac-
teristics. In these networks we can see the synchronous
phase patterns based on 3-phase oscillations because 3
oscillators are coupled by one coupling resistor. In the
hexagonal circuits we can see only two synchronous pat-
terns irrespective of the size of the networks, because if
the relation of the phases of three oscillators around a
coupling resistor is decided, the phase of the next oscil-
lator is decided uniquely. These results are confirmed
by circuit experiments, too.

In the latticé circuit with third-power nonlinear
characteristics, 4 oscillators are coupled around one
coupling resistor. When 4 oscillators are coupled by
one resistor, the system tends to minimize the current
through the coupling resistor by minimizing the sum of
the voltages of the oscillators and we can see 2 indepen-
dent anti-phase oscillations [7],[9]. So in the lattice cir-
cuit with third-power nonlinear characteristics we can
predict that we can see the synchronization based on
anti-phase oscillation. To confirm those phenomena we
carried out both circuit experiments and numerical cal-
culations. Figure 9 shows the numerical results in 3x3
lattice circuits with third-power nonlinear characteris-
tics. In this network we cannot get any synchronous
pattern but many asynchronous phase patterns because
the phase states based on the independent anti-phase
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Fig. 9 Numerical results in lattice circuit with the third-power
nonlinear characteristics in 3x 3 network (o = 4.0, € = 1.5).
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oscillations. These results are confirmed by circuit ex-
periments, too.

3.1.2 Synchronization in the System with Fifth-Power
Nonlinear Characteristics

In the networks with the fifth-power nonlinear charac-
teristics we can keep arbitrary number of oscillations to
be stationary because of the positive slope near 0V of
the nonlinear characteristics [8]. The negative resistance
with the fifth-power nonlinear characteristics is realized
by the circuit shown in Fig. 5(b) and its v-i character-
istics are shown in Fig. 6 (b). On computer calculation,
in order to consider the difference between the natural
frequencies of the oscillators, Eq.(10) is rewritten as

follows.
Tp = — Z Yij

L;;ENL(k)
lﬁ 3 + 1 5
—e |z — =Pz -z
k 3 k 5 k
Ukt = (1 4+ Awg)zr — o Z Yij (12)
Li;€NR(kl)

Awy, = (k—1) x 1073
(k=1,2,--- K, l=1,---,30r4,
m=1,2---,M)

where Aw;, correspond to the difference between the nat-
ural oscillating frequency of the reference oscillator and
those of the other oscillators and are derived from the
conditions on the circuit experiments.

In the hexagonal circuit with fifth-power nonlinear
characteristics, three oscillators are coupled by one cou-
pling resistor. When three oscillators with fifth-power
nonlinear characteristics are coupled by one resistor, we
can see three cases of the phenomena as follows, be-
cause we can choose the number of excited oscillators
by changing the initial states[8].

1. 3 oscillators make three-phase synchronization.

2. 2 oscillators make anti-phase oscillation but the
other one is not excited.

3. No oscillator is excited.

So in the hexagonal circuit with fifth-power nonlinear
characteristics, we can predict that we can see the syn-
chronization based on 3-phase and anti-phase oscilla-
tion.

To confirm those phenomena we carried out both
circuit experiments and numerical calculations. Fig-
ures 10 and 11 show the experimental and numerical
results observed from the hexagonal circuits with fifth-
power nonlinear characteristics when the network size
is 3. From these figures we can see much more syn-
chronous patterns than that of the network with third-
power nonlinear characteristics. Actually we can see 15
phase patterns in the Size 3 hexagonal network while
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Fig. 10  Experimental results in hexagonal circuit with the fifth-power nonlinear charac-
teristics when the network size is 3 (L = 10mH, C = 0.0684F, R = 1.0k, horizontal
scale: 50 usec/div., vertical scale: 5V/div.).
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Fig. 11  Numerical results in hexagonal circuit with the fifth-power nonlinear character-
istics when the network size is 3 (o = 4.0, 8 = 3.5, € = 0.5).
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Fig. 12 Numerical results in hexagonal circuit with the fifth-power nonlinear character-
istics when the network size is 4 (a = 1.0, 3 = 3.5, ¢ = 1.5).

only 2 patterns in the circuit with third-power nonlin- sults observed from the hexagonal circuits with fifth-
ear characteristics. power nonlinear characteristics when the network size
Figure 12 shows the examples of the numerical re- is 4. In this network we can see much more synchronous
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Table 1 The number of the phase patterns in proposed net-
works.
] ) Hexagonal Lattice
Nonlinearity |"Size 3 | Size 4 | 3x3
Third-power 2 2 12
Fifth-power 15 28 126

phase patterns than that of the system with third power
nonlinear characteristics. In Fig. 12(a) and (b), we can
see the phase patterns based on 3-phase and anti-phase
oscillations as we predict. We call them coherent pat-
terns. Moreover we can see asynchronous patterns as
shown in Fig.12(c). In this figure, M means the os-
cillation with smaller amplitude than those of ordi-
nary excited oscillators. In this case, Oscillators 1—4
make anti-phase oscillation and Oscillators 8—10 make
3-phase oscillation but the phase difference between Os-
cillator 1 and 8 is independent, because Oscillators 5-7
are almost stopped. In this case, Oscillators 57 are not
stopped completely because the oscillators around the
resistors R4 and K5 make neither 3-phase nor anti-phase
oscillations. Moreover Fig.12(d) shows another pat-
tern which is not based on either 3-phase or anti-phase
oscillations. In the shaded part of the phase pattern,
3 oscillators do not make 3-phase oscillation though
they are excited, and Oscillators 6 and 7 are excited
with the small amplitudes to compensate such incoher-
ence. These incoherent patterns are the phenomena we
do not predict. In the Size 4 network we can get 22 co-
herent synchronous patterns and 6 asynchronous phase
patterns as shown in Fig.12(c). And we can get also
many incoherent patterns.

Moreover in the lattice circuits with fifth-power
nonlinear characteristics, four oscillators are coupled
by one coupling resistor. When four oscillators with
fifth-power nonlinear characteristics are coupled by one
resistor, we can see four cases of the phenomena as fol-
lows, because we can choose the number of excited os-
cillators by changing the initial states[8].

1. 2 oscillators make anti-phase synchronization and
the other 2 oscillators make anti-phase synchro-
nization independently.

2. 3 oscillators make three-phase synchronization but
the other one is not excited.

3. 2 oscillators make anti-phase synchronization but
the other 2 oscillators are not excited.

4. No oscillator is excited.

So in the lattice circuit with fifth-power nonlinear char-
acteristics, we can predict that we can see the synchro-
nization based on 3-phase and anti-phase oscillation.
To confirm those phenomena we carried out both
circuit experiments and numerical calculations. Fig-
ure 13 shows the examples of the numerical results ob-
served from the 3x 3 lattice circuit with fifth-power non-
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Fig. 13  Numerical results in lattice circuit with the fifth-power
nonlinear characteristics when the network size is 3 (o = 4.0,
B8 =3.5,e=0.5).

linear characteristics. When all the oscillators are ex-
cited, we can see only asynchronous patterns just as
shown in the case with third-power nonlinear char-
acteristics (see Fig.13(a)). When some oscillators
are stopped, we can see both synchronous and asyn-
chronous patterns. In Fig. 13 (b), we can see a coherent
synchronous phase pattern, and in Fig.13(c) we can
see a coherent asynchronous pattern. In this case Os-
cillators 1-3 and Oscillators 7-9 make the independent
anti-phase oscillations because Oscillators 4—6 are com-
pletely stopped. In Fig. 13(d), however, we can see an
incoherent pattern as seen in Fig. 12(d). In the shaded
part of the phase pattern, 4 oscillators do not make ei-
ther 3-phase or anti-phase oscillation though they are
excited, and Oscillator 6 is excited with the small am-
plitude to compensate such incoherence. In the 3x3
lattice circuit we can get 12 coherent asynchronous pat-
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Table 2 Relation between the initial states and the obtained

phase patterns in Size 4 hexagonal circuit (8 = 3.5, ¢ = 1.5).

initial phase pattern
voltage a=1.0 a=3.0
20 | AOOCAOCACB AOOCAOCACB
1.1 | AOODOAMMACB | AOOOAMMACB
T4 —1.3 AOOCAOCACB AOOCAOCACB
—2.0 | AOOCAOCACB AOOCAOC ACB
20 | AODDADMCAB ABCACABBCA
1.5 | AODDADMCAB ABCACABBCA
T5 14 | AODDADMCAB AMABADCCAB
—-1.0 | AOOCAOCACB AMABADCCAB
—20 | AOOCAOCACB AOOCAOCACB
2.0 | AOOCAOCACB AOOCAOCACB
1.3 AOOCAOCACB AMABADCCAB
1.2 | ACOAAOAAAO AMABADCCAB
10 1.1 AOOQAAQAAAO AMMCCMMBDM
—-1.3 AOOCAOCACB AOOCAOCACB
—-20 | AOOCAOCACB AOOCAOCACB
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Table 3 Relation between the initial states and the obtained
phase patterns in 3x3 lattice circuit (3 = 3.5, £ = 0.5).

initial
voltage

phase pattern

a=1.0

a =30

20 | AAAOOOQA’A'A
10 | AAMMMMA’ A’ A'

AAAOOCOA'A A
AAAOOOA'A' A/

z3 | —14 | AAMMMMA'A’A’ | AABOOCBBA

—1.5 AABOOCAAB AABOOCBBA

-2.0 AABOOCAAB AABOOCBBA

2.0 ACAOBOCAC ACAOBOACA

1.6 ACAOBOCAC ACAOBOACA

xg 1.3 AAAOOOA’ A’ A’ ACAOBOACA
20| AAAOOOA'A’A’! AAAOOQOA’A' A/

20| AAAQOOA’A’A
10 | AAAMMMA'A'M

A/IAOOOA’;@’ A
AAAOOOA’A'A!

terns when all the oscillators are excited, and 112 coher-
ent synchronous patterns and 2 coherent asynchronous
patterns when some oscillators are stopped. And we
can get also many incoherent patterns.

3.2 Relation between Initial States and Phase Patterns

In this section, we investigate the relation between the
initial states and the obtained phase patterns by numer-
ical calculations. It may suggest certain ways to apply
the proposed systems to cellular neural networks.’

Tables 2 and 3 show the stable phase states ob-
tained when some initial states are changed from the
states shown in Fig. 14 in the Size 4 hexagonal circuit
and 3x3 lattice circuit, respectively. In these tables the
notation A—O mean the phase states as in the previous
sections. The notation D means that the wave is syn-
chronized with A but does not exhibits either 3-phase
oscillation or anti-phase oscillation and that it has the
same amplitude as A. Note that D produces the inco-
herent phase patterns as M does.

From both results we can see the change of the
phase patterns around the initial values +1.44 that are
the threshold voltage of the single oscillator with fifth-
power nonlinear characteristics when § = 3.5 whether
it oscillates or not. In each network, we can see 2—4
different phase patterns by changing the initial values
from —2.0 to +2.0.

In the networks with different « (i.e. coupling fac-
tor), we can see the different phase patterns from the
same initial state. This is very important feature because
we can decide the character of the networks by choosing
a like choosing the cloning templates in CNN.

When one oscillator changes the phase state, the
distant oscillators change their phase states, too. In this
case the transition of the phase state of one oscillator af-
fects the phase states of the whole network though each
oscillator is connected to only its adjacent oscillators.

In these proposed systems, we can consider the ini-

zo | —1.4 | AAAMMMA'A'M AACOOBCCA
~1.5 AACOOBCCA AACOOBCCA
-2.0 AACOOBCCA AACOOBCCA
20 00 0.0 20
20 2020
20 00 00 ><
Sl 00000

0
< XX
2.0 2.0 2020
(2) (b)

Fig. 14  (a) The initial state of the Size 4 hexagonal circuit. (b)
The initial state of the 3x 3 lattice circuits.

tial states as the inputs and the steady phase patterns as
the outputs. Because so many inputs are mapped into
several phase patterns in these systems, we can use them
for pattern recognition and associative memory. In par-
ticular, the systems with fifth-power nonlinear charac-
teristics can recognize many different patterns because
they have many stable states.

These features are quite similar to those of the
CNN, because we can get many different stable states by
changing the initial states of the networks and each os-
cillator is connected to only its adjacent oscillators [ 10].
When we consider one oscillator as a cell, we expect that
we can use these networks as some kinds of CNN. The
practical ways of application to CNN, however, are our
future problems.

4. Conclusions

In this paper we have proposed the coupled oscillators
networks with hexagonal and lattice structure and inves-
tigated the phenomena in the proposed circuits by both
circuit experiments and numerical calculations. In the
hexagonal circuit with third-power nonlinear character-
istics, we can see the stable phase patterns based on 3-
phase oscillation because all the oscillators are excited.
Similarly, in the lattice circuit with third-power nonlin-
ear characteristics, we can see the stable asynchronous
phase patterns based on anti-phase oscillations. On the
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other hand, in the networks with fifth-power nonlinear
characteristics, various synchronous and asynchronous
phase patterns can be observed because the oscillation
of the oscillator depends on the initial states. In these
networks, we can see both the coherent phase patterns
which are based on 3-phase or anti-phase oscillations
and the incoherent phase patterns which are not based
on either 3-phase or anti-phase oscillations. These in-
coherent patterns are interesting phenomena which we
have not predicted. And in the networks with fifth-
power nonlinear characteristics, we can get much more
phase states than that of ones with third-power nonlin-
ear characteristics.

Moreover from the same initial state we can get
the different phase patterns by changing the coupling
factor a. Therefore we can decide the character of the
networks by choosing a like choosing the cloning tem-
plate in CNN. And the transition of the phase state
of just one oscillator affects the phase patterns of whole
networks though each oscillator is connected to its adja-
cent oscillators. These features are quite similar to those
of the CNN, because we can get many different stable
states by changing the initial states of the networks and
each oscillator is connected to only its adjacent oscil-
lators. And because so many initial states are mapped
into several phase patterns in these systems, we can use
them for pattern recognition and associative memory.
When we consider one oscillator as a cell, we expect
that we can use these networks as some kinds of CNN.
The practical ways of application to CNN are our fu-
ture problems.
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