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SUMMARY In this study, some oscillators with different os-
cillation frequencies, N — 1 oscillators have the same oscillation
frequency and only the Nth oscillator has different frequency,
coupled by a resistor are investigated. At first we consider non-
resonance. By carrying out circuit experiments and computer
calculations, we observe that oscillation of the Nth oscillator
stops in some range of the frequency ratio and that others are
synchronized as if the Nth oscillator does not exist. These phe-
nomena are also analyzed theoretically by using the averaging
method. Secondly, we investigate the resonance region where
the frequency ratio is nearly equal to 1. For this region we can
observe interesting double-mode oscillation, that is, synchroniza-
tion of envelopes of the double-mode oscillation and change of
oscillation amplitude of the Nth oscillator.
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1. Introduction

Since coupled oscillators systems can describe various
phenomena in natural field, there have been many inves-
tigations on such systems and various interesting phe-
nomena have reported by several researchers[1]—[5].
Kimura et al. investigated synchronization phenomena
observed in two oscillators coupled by a resistor shown
in Fig. 1[1]. They confirmed that these oscillators were
synchronized at the opposite phase. They also com-
mented that the synchronization seemed to occur so that
the system tends to minimize the energy consumed by
the coupling resistor. This study was also extended at
the case of three oscillators and they confirmed the gen-
eration of three phase synchronization[2]. Moreover,
we have investigated many oscillators coupled by resis-
tors[4]. In [4], we confirmed that for the case of four
oscillators the system is synchronized at opposite phase
in pairs, and the phase shift between two pairs is not
decided. However, these studies treat only the case that
all of oscillators have the same oscillation frequency. Of
cause, there may be many systems modeled as coupled
oscillators with the same oscillation frequency. How-
ever, because there are very few coupled systems with
the exactly same oscillation frequency in natural field,
various synchronization phenomena which cannot be
explained by coupled systems with the same frequency
exist. Although some studies treating coupled oscilla-
tors systems with different oscillation frequencies have
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been reported, we consider that many unknown nonlin-
ear phenomena remain in such systems. Therefore, it is
very important to investigate such systems.

In this study, we consider some oscillators with
different oscillation frequencies coupled by a resistor.
Because it is difficult to treat general case, we concen-
trate the simplest case that oscillation frequency of only
one oscillator is varied. Namely, N — 1 oscillators have
the same oscillation frequency and only the Nth os-
cillator has different frequency. At first we consider
non-resonance. By carrying out circuit experiments and
computer calculations, we observe that oscillation of
the Nth oscillator stops in some range of the frequency
ratio and that others are synchronized as if the Nth
oscillator does not exist. These phenomena are also
analyzed theoretically by using the averaging method.
Secondly, we investigate the resonance region where the
frequency ratio is nearly equal to 1. For this region we
can observe interesting double-mode oscillation, that is,
synchronization of envelopes of the double-mode oscil-
lation and change of oscillation amplitude of the Nth
oscillator. Because the averaging method cannot be ap-
plied to the double-mode oscillation, these phenomena
are investigated by both of circuit experiments and com-
puter calculations in detail.

The results in this study mean that we can control
the phase states of many oscillators by varying the os-
cillation frequency of only a few oscillators. Hence, the
present study would contribute to the development of
coupled oscillators networks[5] which are expected as
one of future parallel information processing architec-
tures.

2. Circuit Model
The circuit model is shown in Fig. 2. In the system only

the Nth oscillator has different oscillation frequency. vy
is the voltage across the capacitor C' and % is the cur-

0

Fig. 1 Two oscillators coupled by a resistor.
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rent through the inductor L of kth oscillator. At first,
we assume that v — ¢ characteristics of the nonlinear re-
sistor in each oscillator is represented by the following
third order polynomial equation.

i (0k) = —g10k + g3} (D
The circuit equation is given as follows.

dv k

CF = —in —in(vr) )
(k=1,2,---,N —1)
dv . .
acﬂg:—w—%@m (3)
L%y, - 1z:§%:'< @
dt = —Vk : 15
j=1
(k=1,2,---,N)

Changing the variables

1
t=vLCT, a=—

w?’

v = 1/~g1 T, ik Ca Yk, ®)
3g3 3Lgs
and defining

C L
ﬁ:R\E, c=g \/; (©)

then the normalized equations are represented as fol-
lows

Ty =€ (:z:k - %d) — Yk @)
(k=1,2,---,N —1)
iy = wle <xN - %w?v> —wlyn ®)
N
gr=xk—B Y y; (k=1,2,---,N) ©)
j=1

i V2) o)

Fig. 2 N oscillators coupled by a resistor with one different
frequency oscillator.
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nonlinearity. Egs. (7)—(9) may be combined to give the
second order nonliner differential equation as follows

‘:ik-i-wkze(l—xi)ﬂ'fk**‘ﬁYEFk (10)
(k:17277N_1)
iy +wizy = wie(l —2i)in + w?BY

= wQFN (11)
N
Y+NBY => z; (k=1,2,---,N) (12)
Jj=1
where
N
Y =) (13)
j=1

3. Circuit Experiments and Numerical Calculations

We carried out circuit experiments and numerical cal-
culations for the case of N = 3 and N = 4. For com-
puter calculations Eqs. (7)—(9) are calculated by using
the Runge-Kutta method with step size A7 = 0.125.
Figure 3 shows observed phenomena for N = 3.
For the case that all of these oscillators have the same

“&% N u/’"'\ M/"\ 20
NEENE AN NN
N\ IEAYAYAVAY

NAWAWAWAWAYM
NIVAVAAY,

X

RVAWAWAWAWIN
MVAAVAAVAAVANV/

HAWAWAWAWA
o V VUV

&

NAWAWAWAWN
MVAVAVAVAY,
NAWAWAWAWA
MAVAVAVAVA

CIAAAAAARAANAAA
AT

&

2

(a) (b)
Fig. 3 Experimental results for N = 3.
(a) Circuit experiments for L=10[mH], C=100[nF], R=5.6[kQ]
(b) Computer culculation for 8 =0.1,e = 0.03
(1) Three-phase synchronization for w = 1.00.
(2) Opposite-phase synchronization and oscillation death for
w = 1.64.
(3) Opposite-phase synchronization and independent oscillations
for w =4.47.
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Fig. 4 Experimental results for N = 4.
(a) Circuit experiments for L=10[mH], C=100[nF], R=5.6[k2]
(b) Computer culculation for 8 =0.1,¢ = 0.03
(1) Opposite-phase synchronization in pairs for w = 1.00.
(2) Three-phase synchronization and oscillation death for
w = 1.64.
(3) Three-phase synchronization and independent oscillations for
w = 4.47.

frequency (Fig.3 (1)), we can observe that the system is
synchronized at the three-phase. This phenomenon had
been confirmed and analyzed theoretically in [2]. When
the frequency of the 3rd oscillator is varied, we ob-
served that oscillation of the 3rd oscillator stops in some
range of the frequency, namely oscillation death ap-
pears. And the others are synchronized at the opposite-
phase (Fig.3(2)). As increasing the frequency of the 3rd
oscillator, oscillation of the 3rd oscillator starts again
(Fig.3(3)). However, the 3rd oscillator is not synchro-
nized to the others. Namely, the 3rd oscillator oscillates
alone and the others keep opposite-phase synchroniza-
tion.

Figure 4 shows observed phenomena for N = 4.
We can observe similar synchronization phenomena.
When the frequencies of the four oscillators are the
same, the system is synchronized at the opposite-phase
in pairs and the phase shift between two pairs is not de-
cided (Fig.4(1)). Similar phenomenon had been con-
firmed in[3],[4]. When the frequency of the 4th os-
cillator is varied, oscillation of the 4th oscillator stops,
namely oscillation death appears. And the others are
synchronized at the three-phase (Fig.4(2)). As increas-
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ing the frequency of the 4th oscillator, the 4th oscillator
oscillates alone and the others are synchronized at the
three-phase (Fig. 4 (3)).

Moreover, we observed interesting double-mode os-
cillation in the resonance region of w ~ 1 for both case
of N = 3 and 4. We will explain this phenomenon
later.

4. Theoretical Analysis

In this section we analyze the synchronization phe-
nomena in the previous section by using the averaging
method.

Equation (12) is first order linear differential equa-
tion. The solution is given as follows

N
Y = 6—3’8T/€3BTZCUde+Ce_3'BT (14)
j=1
(C : const.)

In the steady state, the second term of Eq. (14) becomes
to zero. Let us assume the solutions of Egs. (10)—(11)
are

zr(T) = precos (740 ) (15)
(k=1,2,---,N—1)
zn(T) = pycos (wr + 6N ). (16)

We pay attention to treat the non-resonance system and
apply for the averaging method to Egs.(10)-(11). We
obtain

. €0k
Pr = *% (k —4)
N
g 30
9ﬁ2+1{2 szjsm %)
(=1
+§ ; p; cos (0 — Hj)} a7
(k=1,2,-- N—1)
. wepn
PN = "¢
B
N—1
B 36
Or = 05 & 1{7 ; p;j cos (O, — 6;)
e
+5 ; p; sin (O — 9j)} (19)
(k:1727 '7N—~1)
; 36%w?
= - = N t.
On 295 T w?) C (C:const.) (20)
In the steady state
o = 0 and 6, =0 (1)
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(k:172a7N)

must be satisfied regardless of the value of 4. In addi-
tion, if py is not zero, O cannot be zero. This means
that Nth oscillator is not synchronized to the others.
We obtain the solutions as follows

e For the case of N = 3

pr=p2=2, 01 —Os=m (22)
B 5
ps = /1 € (96%+ w?) €(96%+ w?) >0
5 =
B
0 1-——— <0
€(98%+ w?)
(23)
03 = At+B (A,B: const.) (24)
e For the case of NV =4
3
p1 = p2=p3=2, 91—9227%
0 — s = — > x (25)
2
B B
21— 7S
e Ve cOFE D)
B
0 l———— <0
e (982 + w?) <
(26)
0, = At+B (A,B: const.) 27)

In this system when N is more than 4 we can’t ob-
serve the synchronization without increasing the nonlin-
earlty e. If the nonlinearlty is increased, we can’t treat
the system using the averaging method.

For the case of N = 3, Eq.(22) shows that the os-
cillators 1 and 2 are synchronized at the opposite-phase.
Eq. (23) shows that the amplitude of the 3rd oscillator
is a function of w and becomes zero for some range
of w. Eq.(24) shows that the 3rd oscillator does not
synchronize to the others.

For the case of N = 4, Eq. (25) shows that the os-
cillators 1,2 and 3 are synchronized at the three-phase.
Eq. (26) shows that the amplitude of the 4th oscillator
is a function of w and becomes zero for some range
of w. Eq.(27) shows that the 4th oscillator does not
synchronize to the others.

Using Eq. (23) the relationship between the ampli-
tude of the Nth oscillator py and the frequency ratio
w is shown in Fig. 5. In the figure, we show the numer-
ical results together. We can see both results agree well
except for resonance region.

For the non-resonance case, we can consider that
this system is completely separated into the oscillator
with the different frequency and the others. Therefor,
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Fig. 6 Double-mode oscillation in resonance region for N = 3
(8=0.1,e = 0.03).

(a) Computer culculation for w = 1.03.

(b) Computer culculation for w = 1.05.

(¢) Computer culculatin for w = 1.09.

(d) Circuit experimental result for L=10[mH], C=74[nF] and
R=5.6[k2].

the stability problem of the solutions in Egs. (22) (25)
is equal to[1],[2]. While the stability of Egs. (23) (26)
are easily confirmed by substituting Egs. (23) (26) into
the equation given by partial differential Eq.(18) with
respect to py .

5. Resonance Region

In this section we consider the resonance region, namely
w o2 1. Experimental and computer calculator results
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Fig. 7 Double-mode oscillation in resonance region for N = 4
(8= 0.1, = 0.03).

(a) Computer culculation for w = 1.03.

(b) Computer culculation for w = 1.05.

(¢) Computer culculatin for w = 1.09.

(d) Circuit experimental result for L=10[mH], C=74[nF] and
R=5.6[kQ].

for N =3 are shown in Fig. 6. From the figures we can
observe the generation of interesting double-mode os-
cillation.

Namely, oscillators 1 and 2 generate double-mode
oscillation and its envelopes are synchronized at the
opposite-phase. While the oscillation of the 3rd os-
cillator seems to have only one oscillation frequency, if
we neglect small effect. As w increases, we can observe
that the beat frequency of the double-mode oscillation
becomes larger and that the amplitude of the 3rd oscil-
lator becomes small and vanishes.

The observed results for N = 4 are shown in Fig. 7.
We can see that the envelopes of the double-mode oscil-
lation are synchronized at the three-phase. The changes
of beat frequency and the amplitude of 4th oscillator
are also confirmed from the figure.

Because the averaging method cannot be applied to
the double-mode oscillation, we cannot analyze these
phenomena theoretically. However, we would like to
emphasize that these phenomena are observed from both
of circuit experiments and computer calculations.

6. Conclusions

In this study, some oscillators with different oscillation
frequencies, N — 1 oscillators have the same oscillation
frequency and only the Nth oscillator has different fre-
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quency, coupled by a resistor have been investigated.
At first we consider non-resonance. By carrying out
circuit experiments and computer calculations, we ob-
served that oscillation of the Nth oscillator stops in
some range of the frequency ratio and that others are
synchronized as if the Nth oscillator does not exist.
These phenomena are also analyzed theoretically by us-
ing the averaging method. Secondly, we investigate the
resonance region where the frequency ratio is nearly
equal to 1. For this region we can observe interesting
double-mode oscillation, that is, synchronization of en-
velopes of the double-mode oscillation and change of
oscillation amplitude of the Nth oscillator.
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