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SUMMARY In this paper, we propose a novel SPICE ori-
ented steady-state analysis of nonlinear circuits based on the cir-
cuit partition technique. Namely, a given circuit is partitioned
into the linear and nonlinear subnetworks by the application
of the substitution theorem. Each subnetwork is solved using
SPICE simulator by the different techniques of AC analysis and
transient analysis, respectively, whose steady-state response is
found by an iteration method. The novel points of our algo-
rithm are as follows: Once the linear subnetworks are solved by
AC analysis, each subnetwork is replaced by a simple equiva-
lent RL or RC circuit at each frequency component. On the
other hand, the response of nonlinear subnetworks are solved by
transient analysis. If we assume that the sensitivity circuit is ap-
proximated at the DC operational point, the variational value
will be also calculated from a simple RL or RC circuit. Thus,
our method is very simple and can be also applied to large scale
circuits, efficiently. To improve the convergency, we introduce a
compensation technique which is usefully applied to stiff circuits
containing components such as diodes and transistors.

key words: steady-state analysis, SPICE oriented algorithm, cir-
cuit partition technique, operational point, AC analysis, transient
analysis

1. Introduction

There are three basic approaches for calculating the
steady-state response. The first one is a numerical in-
tegration method, which is widely used for a large
damping circuits. However, it is inefficient for a small
damping circuits, because the transient behavior will
continue for a long period. The second one is time-
domain shooting methods|[1],[2] which are useful for
small scale circuits containing strong nonlinear ele-
ments. However, it is inefficient for large scale circuits,
because the number of the state variables is generally
increased for large scale circuits. The third one is the
frequency-domain harmonic balance method [4] which
is useful for weakly nonlinear circuits having few non-
linear elements. However, it is inefficient for strong
nonlinear circuits, because we must consider many fre-
quency components for the approximation of steady-
state waveform.

We have proposed a modified hybrid method based
on circuit partitioning technique[5]. In Ref.[5], the
sensitivity circuit is obtained by replacing each nonlin-
ear element with the time-invariant element, which is
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evaluated by the average value over one period [0,T].
This sensitivity circuit must be estimated at every itera-
tion. The circuit has the same configuration as that of
the original one except that all of the nonlinear elements
are replaced by the time-invariant elements. Therefore,
to obtain the variational value, we must also solve the
large scale sensitivity circuit, which is very time con-
suming.

In this paper, we propose a SPICE oriented steady-
state analysis of large scale circuits, which is based on
the circuit partition technique by the application of
the substitution theorem. We first partition a circuit
into linear and nonlinear subnetworks with substitution
theorem. Each subnetwork is solved by the different
techniques of AC and transient analysis using SPICE
simulator. At the first step of the algorithm, the lin-
ear subnetwork is solved by SPICE AC analysis and
it is replaced by a simple RL or RC circuit at each
frequency component. Similarly, the nonlinear subnet-
work is also solved by SPICE AC analysis at the DC
operating point, and it is also replaced by a simple RL
or RC circuit using the same technique as for the lin-
ear subnetwork. These modified sensitivity circuits are
used to calculate the variational value. Therefore, we
need no longer estimate the sensitivity circuits at each
iteration. If the nonlinearity is not very strong, the cir-
cuit will be efficiently used as the sensitivity circuit for
calculating the variational value Av(¢t). Thus, the dif-
ference between the method[5] and our method is in
obtaining the simple sensitivity circuit. If we can parti-
tion the circuit such that the nonlinear subnetwork Ny
is small scale compared to the linear subnetwork N7,
our algorithm can be efficiently applied to large scale
circuits.

To improve the convergency, we introduce a com-
pensation technique which is usefully applied to stiff
circuits containing diodes and transistors.

2. Hybrid Method Using Frequency Responses

To understand the basic ideas of our method, consider
a circuit as shown in Fig.1(a). We choose a linear
subnetwork Ny such that it includes as many L’s and
C’s as possible, and nonlinear subnetwork Ny contain-
ing as few L’s and C’s as possible. In this case, the
transient behavior of the nonlinear subnetwork will fin-
ish after a short period. Thus, we can easily solve the
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Fig. 1 (a) A schematic diagram of our circuit partition tech-
nique. (b) Partitioning the circuit into a linear subnetwork Ny
and a nonlinear subnetwork Ny using a substitution voltage
source v(¢). (¢) Simplified R(w) + j X (w) model of linear subnet-
work Ni.

steady-state response of Ny using SPICE simulator. The
schematic diagram of our partition technique is shown
in Fig.1(b). For obtaining steady-state response, we
approximate the substitution voltage source as follows:

M
v(t) =Vo+ Y (Vep—1coshkvt + Vagsinkut) (1)
k=1
where M is a number of frequency components in
our consideration. For multi-frequency components
Wi -+ Wy, we choose the fundamental frequency v
in the following manner:

wn }/m,

(for an arbitrary large integer m)

v = min{w;

and approximate the other freqhency

wn, ;v (for an integer n;).

2

Note that if we choose large m, we can approximate any
frequency w; in a given accracy.

Now, we assume that the original circuit in
Fig.1(a) has a unique steady-state solution described
by (1). Then, the substitution theorem says that the
solution v(t) satisfies

F(v(t)) = in, (v(8)) +in, (v(t)) = 0 2)
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where in, () and ip,(-) are currents through the sub-
networks N7 and Ny as shown in Fig. 1(b). We solve
the steady-state solution satisfying (2) by an iteration
method, and assume the waveform at the jth iteration
by
M
V() = Vi + Z(ngk_l cos kvt + V3, sinkvt). (3)
k=1

For the linear subnetwork N7 we can calculate the
steady-state response by AC analysis using SPICE sim-
ulator. Once the linear subnetwork to the substitution
voltage source is solved, it is replaced by a simple equiv-
alent RL or RC circuit at each frequency component, as
shown in Fig. 1 (c). Thus, we can easily get the response
at each frequency component.

Py () = V{0 (1)} + Wafe(t)} 4

where the symbols ), )V, denote linear operators. The
waveform is described by Fourier expansion into the
following form:

M

N1 (t) = Iy o+ Z{Ig\fl,%—1 cos kvt
k=1

+Ilj\71,2k sin kvt}. (%)

For the nonlinear subnetwork N,, we calculate the
steady-state response using SPICE transient simulator.
Note that if the damping is very small, we recommend
to use the time-domain approaches[1],[2]. We also de-
scribe the waveform by Fourier expansion

Ao(t) = N{o(t))
M

= I{\rz,o + Z{IJ{IZQk—l cos kvt
k=1

+Ig\,272k sin kvt} (6)

where A denotes a nonlinear operator for obtaining
the state-steady response of nonlinear subnetwork Ns.
Thus, we have from (5) and (6) the following system of
determining equations for calculating the Fourier coef-
ficients of the state-steady response:

Inip(V) Inoo(V)
In1a(V) Ing 1 (V)
FV)= : + ; =0
Int o (V) Inoon (V)
(7
where
VE[‘/(‘);Vl;"'a‘/QM]T' (8)

To calculate the solution at the (5 + 1)th iteration,
assume the solution

VIHH(t) = v (t) + Au(t) 9)
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where Awv(t) is a variational waveform, which is de-
scribed by

M
Av(t) = AVy + Z{Ang_l cos kvt
k=1
+AVay sin kut}. (10)

Substituting v/ *1(¢) into (2), we obtain

F(’Uj —l—A’U) = iN1(Uj+1) -|—Z'N2(’Uj+1)

= V{7 ()} + Vole(t)}
N {7 (1)}

= Vi {0} + Vi{Av(t)} + Vole(t)}
INVIIARTON an

where we approximate N'{v/*1(¢)} by the Taylor expan-
sion as follows:
N

N @)y = N{v (O} + - -

S Av(t).  (12)

’u:fuj
Using the responses of each the subnetworks N; and
Na, we define the residual error &7 (t)

Ej(t) = iNl(Uj(t)) +iN2(vj(t)). (13)
Substituting (12) into (11), we obtain
F(v’ + Av) = 31{o/ ()} + Vi {Av(t)} + Da{e(t)}

+N{v (t)} —l— N Au(t)

ov
= &1 (t) + Vi {Av(®)} + GI (1) Au(t)
= Y4y (Av) + Yy 1(Av) + €7 (1) (14)

where GY(t) corresponds to the time-varying element de-
scribed by

M
GI(t) = Gg) + Z {Gék—l cos kvt + Gék sin kut} .
k=1

(15)

However, it is not easy to solve the time-varying
circuit given by (14). Therefore, we approximate it by
the time-invariant circuit as follow:

%, (A0) + V4, o(Av) + & (t) = 0. (16)

The symbols Y} (Av), V4, (Av) and V3, ((Av) in
(14) and (16) denote linear operators which transform
the substitution voltage source Aw(t) into the time-
domain responses of the associated subnetworks, where
the subscript “¢” denotes the time-varying operator and
“0” the time-invariant operator.

Now, consider the sensitivity of nonlinear elements
at jth solution. For the example of a nonlinear resis-
tor ip =1 r(vR), the time-varying resistor is obtained as
follows:
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din

'UR:'ug:t

Since, it is not easy to solve the response of the time-
varying circuit, we approximate it by time-invariant el-
ement
di
Ry = -2
dUR

VR=VRO

where vpg is the DC operational point. For the other el-
ements, the time-invariant sensitivity elements are given
by Table 1 in the same manner. Note that usual AC
analysis of the SPICE simulation is the response of the
sensitivity circuits at the DC operational point. The
schematic frequency response is shown in Fig.2 (a), and
we can easily replace the sensitivity circuit by a sim-
ple RL or RC circuit as shown in Fig.2 (b), where the
impedance is estimated by

V(kv)
Z(kv) = (k)

(k=1,2,---,M)

= R(kv) + j X (kv)

at each frequency component, and Z(kv), V(kv) and
I(kv) are complex value. The variational value Av(t)
can be independently calculated by using superposition
theorem at each frequency component of €7 (¢). Thus, we
can estimate the variational value Awv(t) by very simple
calculation of Fig.2 (b),

Vv, (Av) + Vi, 0(Av) + €7 (2) = 0. (17)

Therefore, we need not estimate the sensitivity circuit at
each iteration.
Since the variational value Av(t) obtained by the

Table 1 Sensitivity elements.
R(t) Ro
— T o — —— —wm—
ir=i R(VR) in=R(va in=Rovnr
di
R . . .
= dvalvrevm V' Operational point
L&) Lo
—T— —— —— —— —r—
du=bu(i) dL=L(Di bu=Loic
A
Lo = do. o . .
=9 li=io iLo : Operational point
C(t) Co
EE— P —
QG=cc(Vc) o=Ct)ve go=Cove
A
Co = dve |vemveo VO Operational point
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Fig. 2 (a) Frequency responses of N1 or Na. (b) Sensitivity
circuit for each frequency component obtained AC analysis.

above method is not the solution of the original time-
varying sensitivity circuit, the convergence ratio will not
be so large as that using the Newton method. How-
ever, we can hope for sufficient convergence ratio for
the weakly nonlinear circuits.

The iteration is continued until the variation satis-
fies ||AV]| < 6 for a given small §, where

AV = [AVy, AV4, -, AVau] T (18)
If the residual error defined by

B Ny
€1 =T /O [ (v7) + v, (7)) dt

S (19)

k=2M-+1

is not small enough, we must increase the number of fre-
quency components and repeat algorithms (9) and (16).
Thus, we get the steady-state response v(t).

Our algorithm can be efficiently applied to weakly
nonlinear circuits. However, for stiff nonlinear circuits,
the iteration sometimes becomes unstable. Then, we
recommend to introducing compensation resistors R,
and — R, as shown in Fig.3(a),[5]. The resistor R, in
the nonlinear subnetwork plays a very important role
in weakening the nonlinearity, as shown in Fig. 3 (b).

Now, we summarize our method in the following
algorithm:

Algorithm

Step 0: Partition the circuit into two subnetworks Ny
and N, using the substitution sources v(t). Set
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Fig. 3 (a) Compensation technique. (b) A schematic diagram
weakening the nonlinearity.

the frequency component MT. Next, to obtain
the sensitivity circuit, apply SPICE AC analysis
to both the linear and nonlinear subnetworks at
the DC operating point.

Step 1: Set v =0 and j = 0.

Step2: Calculate the response iy (t) of v7(¢) from the
simplified circuit Fig.1(c), and transient re-
sponse iy2(t) of the nonlinear subnetwork using
SPICE.

Step 3: Calculate the variational value Av for the time-
invariant sensitivity circuit™.

Step 4: If the variational value satisfies ||[AV|| < 6 for a
given small 6, then go to Step 5. Otherwise, set
j=44+1,vI =171 + Av, and go to Step2.

Step 5: If the residual error (19) is not small enough,
then, we must increase the number of frequency
components M, and go to Step0. Otherwise,
stop.

3. Error Estimation
We will estimate an error bound for the solution with

the help of a proposition due to Urabe[3], where the
following notation is adopted:

T
o] = %/0 v2(£)d. (20)

M should be chosen 2V, because we apply FFT for
the frequency domain analysis.

" For a weakly nonlinear circuit, the sensitivity circuits
for linear and nonlinear subnetworks can be approximated
by the simple RL or RC circuit at each frequency at Step 0
as shown in Fig. 2 (b).
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If we define the Euclidean norm for a vector by

VI =VIVol2+ VA2 + Va2 + - + [Vam |2 (21)

and if each element of the vector V is composed of
the Fourier coefficient of v(¢), then both norms from
(20) and (21) will coincide. Now, we derive a sufficient
convergence condition of our iterational method due to
Urabe’s theorem [3].

Theorem: Assume the circuit is partioned into a lin-
ear and a nonlinear subnetworks. Then, we have the
following determining equation:

F(v) = Y1(v) + a(e) +in(v) = 0 (22)

where the symbols V1 (v) and Ys(e) denote linear op-
erators, and the subscript “N” denote the nonlinear
subnetworks. And there exist positive constants &,
k (0< k <1)andr, M, for a given approximate solu-
tion v° as follows:

0)  Q={vl |-l <6}

—

) Yy - Iv@) < =,
(0£k <1 for all veQ)
(i)  [JFEO) <
(iv) IJ\Z <
v) Y lsm

where Jy(v) is the Jacobian matrix of the nonlinear
subnetwork, and Y is an admittance matrix at the parti-
tioning point, and Y is an admittance matrix obtained
from the time-invariant equivalent circuit as follows:

i = [V Yt Yot 1]

(23)

where the admittance at kv frequency component is ob-
tained from Fig. 1 (e) as follows:

YN(]CZ/) = YN,R(kV) + jYNJ(kI/) (24)
and the admittance matrix at partitioning point Y is
given by

_ . Yr(kv) Yi(kv

Y = [ Yr(0) diag [ “Yi(kv)  Ya(kv) (25)
where each component is given by

YR(;CV) = YL’R(]{?V) -+ YN7R(]€V) (26)

Y](}ﬂl/) = YL}I(]{JZ/) + Y]\n](kl/). (27)

Then, our algorithm (17) converges to the exact solution
v*(t) and the truncation error is given by

Mr
1—k

|lv* — 2% < (28)
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Proof: For j =0, we have from (17):
Vi(vt — o) + ymo(vl — %) = —F(x°). (29)

From the definitions (20) and (21) and the assumptions
(iti) and (iv), we have from (29),

VI -V < Mr. (30)

For jth and (j+1)th iterations, we have from (16):

b (,Uj+1 _ Uj) + yN,O(’Uj+1 _ Uj)
+ir(v?) + ¥ (v) =0 (31)

V(v =77 + Yyo(ef — 077
+ i) T (W = 0. (32)
Since
ir(v) = Y1 (v) + Vale) (33)
for the linear subnetwork, we have
Vi@ = v7) + Do (971 = )
= Vno(v! —vi™h) — zﬁv(vj) + i{v_l(vj_l). (34)

Now, describing the relation (34) in the frequency-
domain, we obtain from the mean-value theorem the
following relation:

1
Y[Vt —vi] = / Yy — In[VITt 4 0(V?
0

—VITHHVI —VIiThds.  (35)

By assumptions of VJ~! V7 belonging to Q, V7i~! +
6(VI —VJ~1) also belongs to 2, where 0 is (0 < 6 < 1).
Thus, we have from the assumptions of (ii) and (v).

(VI VAL < MGV v

= &|[V7 = VI, (36)
By assumption for mathematical induction,
VI = VI | < w71V - VO (37)
So, we have the following relation,
|[VITL — VI < w2 [VE = VO (38)

Hence, we have the following relation from (29),
[VITE = VO < [[VIFE = VI 4 ||[VI - VI
o V=V
S (W +rTH 4
x4+ 1)V = VO
Mr

1—x

< <6 (39)
Thus, we have Vit1 € Q. So, we obtain (28) for the
error bound. Q.E.D.
If the nonlinearity of the circuit is strong, the as-
sumption (ii) will not be small. However, it will be
largely reduced by introducing the compensation ele-
ment which weakens the nonlinearity of the circuit.
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4. Illustrative Examples
4.1 Simple Diode Circuit

To show the efficiency of our method, consider a simple
diode circuit as shown in Fig. 4 (a).

We introduce compensation resistors R, and —R,,
where — R, is contained in the linear circuit and R,
in the diode circuit. The compensation resistors plays
an important role in weakening the nonlinearity. We

Ri L G a
4
e(t) Re3 V() ¥
;)
(a)

VIVl

iR i am
NEVAR RV R Y Y

\/ \ v
00 20 4.0 6.0 3.0 10.0 120 140  [eq]
(b
10°- Frequency spectrum of v_out
107+
107
163
107}
0.0 8.9 133 26.
FREQUENCY (rad / sec )
(©

-1

S

&

&
10l
102
10-3 [

10-4 C 1 1 { 1

1 3
Iteration
(d)

Fig. 4 (a) Simple diode circuit. The circuit parameter is
Ry = 1[Q], Ry = 5[Q], L = 1[H], C = 1[F], iq = 10® (exp
(40vg) — 1), e(t) = 1.5cos3vt + 1.0 cos 16vt [V]. (b) Steady-state
waveform of vout(t). (¢) Frequency spectrum of vout. (d) Con-
vergence ratio.
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partition the circuit into two subcircuits at a — a’. If
we choose the fundamental frequency component v =
0.4433 [rad/sec|, then we have

wy = 3v, wo = 16v.

Then, we start the iteration with v°(¢) = 0 at the initial
state, and the steady-state is obtained in 9 iterations.
The waveform, frequency spectrum and convergence ra-
tio are shown in Figs. 4 (b)—(d), where we assumed 256
frequency components.

4.2 Amplitude Modulation Circuit
Figure 5 (a) is an example of amplitude modulation cir-

cuit. Since the circuit has a high Q resonance circuit, if
we apply a brute force method to obtain the steady-state

Hﬂ’vwl(l)

e2(t) Re

e1(D) RiZ R3: Vee

RS; C4 RBlC5

+—

%

TC7 3R11 ‘Vmﬂ(l)

e2(t) R2!

el R1$ R3 Vee

R8T C5
R C4

—

(b)

Fig.5 (a) Amplitude modulation circuit. The circuit parameter
is By = 11[kQ], Ry = 43[kQ], Rs = 1.7k, Ry = 2.7[kQ)],

Rs = 100[Q], R¢ = 10[Q2], Ry = 100 [Q], Rs = 100[Q],
Rg = 5002, Rio = 10[Q], Ri1 = 3.3k, C; = 100 [puF],
Cy = 20[uF], C3 = 100 [uF], C4 = 100 [uF], Cs = 10 [uF],

Cs = 10[pF], C7 = 0.2{uF], Ly = 100[pH], Ly = 100 [mH],
e1(t) = 0.3sin4vt[V], e2(t) = 1.0sin20vt [mV]. (b) Partitioning
amplitude modulation circuit into two subnetworks.
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Fig. 6 (a) Steady-state waveform of vey:(t). (b) Frequency

spectrum of vey:. (¢) Convergence ratio.

solution, it will take a large computation time. We par-
tition the circuit into two subcircuits at a — o’ as shown
in Fig.5(b). If we choose the fundamental frequency
component v = 27 x 2.5 x 10° [rad/sec], then we have

wy = 4v, we = 20v.

Then, we start the iteration with v%(¢) = 0 at the initial
state, the and the steady-state is obtained in 6 iterations.
The waveform, frequency spectrum and convergence ra-
tio are shown in Figs. 6 (a)—(c), where we assumed 128
frequency components.

5. Conclusions and Remarks

We partition a circuit into linear and nonlinear subnet-
works with substitution theorem. Each subnetwork is
solved by the different techniques of AC and transient
analysis using SPICE simulator. At the first step of the
algorithm, the linear subnetwork is solved by SPICE
AC analysis, and it is replaced by a simple RL or RC
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circuit at each frequency component. Similarly, the non-
linear subnetwork is also solved by SPICE AC analysis
at the DC operating point, and it is also replaced by the
simple RL or RC circuit with the same technique as for
the linear subnetwork. If the nonlinearity is not very
strong, the circuit will be used as the sensitivity circuit
for calculating the variational value Av(¢). Thus, our
algorithm is very simple. If we can partition the circuit
such that the nonlinear subnetwork N, is small scale
compared to the linear subnetwork Ni, our algorithm
will be efficiently applied to large scale circuits.

The convergence ratio in this paper may be small
compared with the Newton methods such as Refs.[1]—
[4],[6], because our method belongs to the relaxation
method in the frequency domain. However, the con-
vergence ratio depends on the nonlinearity. If the non-
linearity is not very strong, we will have sufficient con-
vergence ratio. Note that time-domain shooting meth-
ods[1],[2] are efficiently applied to the small scale
circuits because they depend on the Newton method.
However, they are inefficient for large scale circuits,
where the number of state-variables is so great that it
takes much computation time to obtain the variational
values. The frequency domain methods[3]-[4],[6] can
be only applied when the circuit is partitioned into lin-
ear subnetwork and nonlinear resistive elements. There-
fore, it is not allowed when the nonlinear elements have
the dynamics. Many nonlinear elements such as transis-
tor, diode and FET have dynamics, so that the method
can not be applied. The ideas of our method are similar
to those of the reference[5]. Hence, the convergence ra-
tio is equal to[5], and it can be applied to a large class
of nonlinear networks. Furthermore, we have improved
the method such that the steady-state response can be
obtained by the use of only SPICE simulator.
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