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SUMMARY  There are many kinds of transmission lines such
as uniform, nonuniform and nonlinear ones terminated by lin-
ear and/or nonlinear subnetworks. The nonuniform transmission
lines are crucial in integrated circuits and printed circuit boards,
because these circuits have complex geometries and layout be-
tween the multi layers, and most of the transmission lines possess
nonuniform characteristics. On the other hand, the nonlinear
transmission line have been focused in the fields of communi-
cation and instrumentation. Here, we present a new numerical
method for analyzing nonuniform and nonlinear transmission
lines with linear and/or nonlinear terminations. The waveforms
at any points along the lines are described by the Fourier ex-
pansions. The partial differential equations representing the cir-
cuit are transformed into a set of ordinary differential equations
at each frequency component, where for nonlinear transmission
line, the perturbation technique is applied. The method is ef-
ficiently applied to weakly nonlinear transmission line. The
nonuniform transmission lines terminated by a nonlinear sub-
network are analyzed by Aybrid frequency-domain method. The
stability for stiff circuit is improved by introducing compensa-
tion element. The efficiency of our method is illustrated by some
examples.

key words:  nonuniform transmission lines, nonlinear trans-
mission line, perturbation technigue, hybrid frequency-domain
method, compensation element

1. Introduction

The high-speed performance of microwave or digital cir-
cuit systems is limited by the interconnect effects rather
than the switching speed of semiconductor devices. For
high frequency signal, the dispersive of transmission
lines is remarkable, and the delay, reflection phenomena
and crosstalk cause many distortions of the transmitting
waveform. Generally, these circuits are fabricated on a
integrated circuit. To achieve the high density, com-
plex geometries and layout between the multi layers are
necessary. In this case, the transmission lines are con-
sidered as having nonuniform characteristics. There-
fore, the analysis of nonuniform transmission lines is
important for designing the high performance systems
on VLSI circuits, printed circuit boards and multi-chip
modules.

Recently, many papers about the transient analy-
sis of nonuniform transmission lines have been pub-
lished [ 1]-[5], where the nonuniformity is assumed by
a piecewise stepping function. When the transmission
lines have complicated structures, applying these meth-
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ods is difficult due to the expensive computational cost.
Palusinski and Lee [ 6] have proposed a spectral method
with Chebyshev polynomials which can be applied to
any kinds of nonuniform transmission lines. Dhaene,
Martens and Zutter [7] have presented an efficient time-
domain method based on the convolution technique to
the scattering parameters. The method can be applied to
any circuits whenever the parameters are derived by any
techniques. Manney, Nakhla and Zhang [8] have ap-
plied the NILT (Numerical Inversion of Laplace Trans-
form) to the transient analysis of nonuniform transmis-
sion lines, where they first get the solution in complex
s domain, and NILT is used to get the time-domain
response.

In this paper, we focus the steady-state analysis of
nonuniform transmission lines with nonlinear termina-
tion is also important on the design of the microwave
systems. Since transmission lines are equivalently de-
scribed by the infinite number of state equations, we can
not directly apply the time-domain shooting method [9]
based on the transient analysis. Here, a partitioning
technique in the time- and frequency-domain is pre-
sented, where a given circuit is partitioned into linear
and nonlinear subnetworks. If the voltage and current
waveforms of one subnetwork are exactly equal to the
other at the partitioning point, it will give rise to the
steady-state waveforms. The response for the linear sub-
networks containing the nonuniform transmission lines
can be calculated in the frequency-domain. If the re-
sponse of nonlinear lumped subnetwork calculated in
the time-domain is described in the frequency-domain,
then, we can easily calculate the steady-state response
[16]. For the nonuniform transmission lines, we do not
place any restriction on the nonuniformity, but also as-
sume frequency-dependent parameters. It is very impor-
tant, because skin and proximity effects [ 10] are serious
problems to high-speed VLSI circuits.

On the other hand, nonlinear transmission line is
significant in the fields of communication and instru-
mentation. Especially, GaAs nonlinear transmission
line is used for picosecond pulse compressions, broad-
band phase modulations [11] and picosecond shock-
wave generations [12]. Nonlinear transmission line
is described by nonlinear partial differential equation.
Freeman and Karbowiak [13] have introduced the dif-
ference approximation technigque. The draw back of this
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method is great computational time, because we must
finely discretize the time and spatial coordinates to get
the accurate solution. Here, we propose a frequency-
domain perturbation method such that nonlinear terms
at each iteration are replaced by using the previous re-
sults [14]. In this case, the nonlinear partial differential
equation is solved in a set of linear ordinary differen-
tial equations at each iteration. Our method can be ef-
ficiently applied to weakly nonlinear transmission line.

In Sects.2 and 3, we propose a numerical method
for analyzing the nonuniform transmission lines termi-
nated by the nonlinear lumped subnetwork. In Sect. 4,
we present a frequency-domain perturbation technique
to analyze nonlinear transmission line. In Sect.5, we
show some illustrative examples.

2. Nonuniform Transmission Lines

Consider N-conductors transmission lines terminated
by linear subnetworks as shown in Fig. 1, where the pa-
rameters per unit length are given by R(z,w), L(z,w),
C(z,w) and G(z,w) which have nonuniform and
frequency-dependent characteristics and they are func-
tions of a distance = from near-end and a frequency w
containing in the transmitted signals.

Let the transmission lines be driven by pulse inputs
of the period 7. We describe the pulse inputs e(t) by
the complex Fourier expansions as follows:

M
e(t) = Z Ej. exp (jkwot) (D)
k=—M
for wo = 27 /T.

The circuit equations of the transmission lines are
described by the following partial differential equa-
tions.

¢ .
_8v(§2’ ) = R(w,w) i(:I:,t) +L(m,w) 81(;; t)
(2.2)
di(x,t) ov(z,t)
T, = G(z,w) v(z,t) + C(z,w) 5
(2.b)
Linear Subnetwork Linear Subnetwork

N : : N

Nonuniform Transmission Lines

Fig. 1 N-conductors nonuniform transmission lines terminated
by linear subnetworks.
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We also assume the waveforms in the Fourier expan-
sions as follows:

M
v(z,t) = Z Vi(z) exp (jkwot) (3.a)
k=—M
M
i(z,t) = Z 1.(z) exp (Fkwot). (3.b)
k=—M

Substituing (3.a), (3.b) into (2.a), (2.b), they are trans-
formed into the ordinary differential equations at each
frequency component,

L)1 2] e

where
Z, = Rz, kwo) + jkwoL(z, kwo)
Y, = Gz, kwo) + jhkwoC(z, kuwo)

Put the solutions of (4)

ARl

where ®;(z) is the fundamental matrix solution for k-
th frequency component. Observe that the coefficient
matrix of (4) depends on the geometrical structure of
nonuniform transmission lines and it can be only solved
numerically except for the special linear case.

Now, let us apply the boundary conditions to (5).
At the input terminals, we have from the Thevenin’s
equivalent circuit theorem,

Ein i — Zin i 1(0) = V(0). (6)
On the other hand, we assume at the output terminal:
Vk(l) = Zout,k Ik(l) (7

where E,,, ;, denotes the input voltage sources at kth fre-
quency component, and [ is the transmission line length.
Combining (5), (6) and (7), we can get the responses at
the both end points in the frequency-domain,

[ ‘\/flz((%) ] = —[Ap + BrY ] By Yoy { Elbm }
®)

where

A=) o

Be=| 20 ) )

-1
Yok = { ZS“:’C Z;:lt,k }
Yo = { Zg’k g J (9.b)
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Thus, we can calculate the time-domain responses from
(3.2), (8) and (9).

3. Hybrid Frequency-Domain Method

Now, we consider the nonuniform transmission lines
terminated by a nonlinear subnetwork as shown in
Fig.2 (a), where IV; is a linear subnetwork which con-
tains the transmission lines and N, is a nonlinear sub-
network.

Using substitution theorem [17], the circuit can be
partitioned into two subnetworks as shown in Fig. 2 (b).
Then, we assume the substitution voltage sources v (¢)
as follows:

M

v(t)= > Viexp (jkwot). (10)
k=—M

Linear Subnetwork Nenli) Sub, 3

&

: M N,
(a)
Linear Subnetwork Nonlinear Subnetowork
U vt
(% i
‘31 N2
. M N,
Q VZC—) iNn
€
Vn
wn
(b)
Linear Subnetwork Nonlinear Subnetowork
Ay, 8{
N; j N
i Ay, 8;‘ N
Ay, ;
(©

Fig.2 (a) Nonuniform transmission lines terminated by a non-
linear subnetworks. (b) Partition the circuit into the linear
and nonlinear subnetworks using substitution voltage sources
v1(t),...,vn(t). (c) Sensitivity circuit for determining the varia-
tional values Awvq(%), ..., Avp(t).
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The response of the linear subnetwork at the partition-
ing point can be calculated by (5), (6) and (10) as fol-
lows:

Ink = Hyo1Eip p + Hp 22V (1
where
Hy = —[AxZi — By By

Zing O
Zy = |: O’k 0 :| .

Using superposition theorem, the time-domain re-
sponses of the linear subnetwork iy, (¢) are described by
the Fourier expansions:

M

ip(t) = Y Ippexp(jhwot). (12)
k=—M

On the other hand, the time-domain responses of the
nonlinear subnetwork iy (%) to the substitution voltage
sources (10) are calculated by a numerical integration
technique such as backward difference formula [18].
Then, we describe the responses iy (t) by the Fourier
expansions:

M

in(t)= > Inxexp(jkuwot). (13)
k=—M

The substitution theorem [17] says that if the sub-
stitution voltage sources v(t) satisfy

F(v(t)) =ipL(t) +in(t) =0 (14)

v(t) will be the output voltages at the far-end of trans-

mission lines. Then, let us calculate the steady-state

solutions satisfying (14) with an iterational method.
Assume the solutions at the j+ 1-st iteration,

VITL() = vI(t) 4+ Av(t) (15)
where Av(¢) is the variational voltage waveforms de-
‘scribed by

M
Av(t) = Y AVyexp(jkwot). (16)

k=—M
Substituting v/ *1(¢) from (15) into (14), we obtain
P + Av(D) = 570 + 570
~ YL (AV(E) + Yy (AV(E)) + 7 (2) = 0.
(17)

It is not easy to solve the time-varying circuit given by
(17) even if it is a linear. Therefore, we introduce the
following approximate equations:

YLAV(E)) + Yy o(AV(E) + &7 (t) = 0 (18)
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where the residual errors £7(t) are defined by
£(t) = 1, (t) + & (1) (19)

The symbols Y/}, (Av (1)), Y ,(Av(£)) and Y% o(Av (1))
in (17) and (18) denote linear operators which transform
Av(t) into the time-domain responses of the associated
sensitivity subnetwork, where the subscript “t” denotes
the time-varying operator and “0” the time-invariant op-
erator, respectively [15].

Now, consider the equivalent circuit for determin-
ing Av(t) satisfying (18). It has the same circuit con-
figuration as the original one, except that the voltage
sources are short-circuited and all of the nonlinear el-
ements are replaced by time-invariant elements. At the
partitioning point, it has current sources equal to the
residual errors 7(t) given by (19). Thus, we have the
equivalent circuit as shown in Fig. 2 (c) and the Fourier
coefficients of the variational voltages AV, at k-th fre-
quency component can be easily obtained by the appli-
cation of phasor technique to this circuit.

The iteration is continued until the variations sat-
isfy

AV [[<k (20)
for a given small x, where

= [AVy, AV, ..., AV ]F. (21)

The residual errors after the iteration having converged
are given by [9]

T . .
§ =7 [ I56 i P

= > I (22)

k=2M+1

If the residual errors are not small enough, we must
choose more frequency components given by (10) and
repeat again the same iteration. Furthermore, the com-
pensational technigue [15] is used to improve the con-
vergence ratio for the stiff circuits containing transistors
and diodes.

4. Nonlinear Transmission Lines

Now, consider a nonlinear transmission line as shown
in Fig.3. The circuit equations are described by a
pair of the following nonlinear partial differential equa-
tions:
v 8@15[, 01 3qc
—5- = 5, TURs
Oz ot bz Ot

where

+ig (23)

¢, = Lip, +edr(in), vr= Rig+cop(in)
(24.2)
ic = Gug + E?A;G (Ug)

(24.b)

gc = Cvg + ede(ve),
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s o Vr
i i+di

o——+t T d—Fw——9——0

9@ ic v4dv

QO¢—— < ——»
-+

. 0
|
|

T

dx

Y

Fig. 3 Discrete model of nonlinear transmission line.

where ¢1,(i1.), 9r(ir), dc(ve) and ig(vg) imply non-
linear terms, and ¢ means a small constant. We have
t =1ty =tp and v = vo = vg from Fig. 3. Substituting
(24.a), (24.b) into (23), we have

v _ Laz +Ri+e (‘%’L %y R) (25.2)

Ox o di It
9 _0v 04 Ov
—5o = Cg HGu e <a_§+ G) (25.b)

When the nonlinear terms are small enough, we can
efficiently apply the perturbation technique. Thus, we
assume the waveforms at the j +1-st iteration:

M

Tz, 1) = Z VIt (z) exp (jkwt) (26.a)
k=—M
iz Z IJ+1 z) exp (Fkwt) (26.b)

Substituting (26.a), (26.b) into (25.a), (25.b), we
have

w3 )= [ e[

e[ H ] 7

where
Zr = R4 jkwLl, Y;=G+ jkwC.
The last term in (27) is estimated by

b i R
< 8L8t+ R) o= i Z V]f z) exp (jkwt)
5 =J
(28.a)
BGc Ov - )
— -+ LR I (z) exp (jkwt).
(o5t St
1 =17
(28.b)

Thus, the nonlinear partial Egs. (23) are transformed
into a set of linear ordinary differential equations at
each frequency component.
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The solutions of (27) are given by

e | = v [ ) | A

“of) e | O Jas
(29)

ESTe N

where ®4(z) is the fundamental matrix solution of (27).
In this case, it is given by

cosh vz —Z¢ psinhy,x
= 1 :
D (z) . sinh v,z cosh v (0)
c,k

7. R+ jkwL
ok = A G jkwC

W = V(R + jkwL)(G + jkwC).

Since the numerical convolution integral is time-
consuming, we introduce the recursive convolution tech-
nique based on the backward Euler method [18] at a
point ;.

2(zip1) = /O+ @k(mi+1—s)[ é(s) }ds

(s)
= &, (Az)z(z;) g
N . 'I’k(mi-u B s) { Jlizj((ss)) :| ds
= &, (Az)z(z;) + Az { ‘{zj((;:f)) } 31)

where Az = Tip1 — Ty
Now, applying the Thevenin’s theorem at the input
terminal, we have

Einx — ZopIT(0) = VITH0). (32)
On the other hand, we have at the terminal point
Vit () = Zpp 1) (33)

Combining (29), (32) and (33), we can estimate the ini-
tial conditions (V7 '(0), 727 (0))T at the input port,
and (V{"'(z), [T (2))T are calculated by (29) and
(31).
Now, we summarize our algorithm as follows:
1) Set j = 0. Put
(VR;O<$)7I18(:E))T:07 (k:0717277M)

as an initial guess. Set a sufficient small number §
for the stopping condition.

2) Set j = j + 1 and describe the nonlinear terms in
Fourier expansions (28.a) and (28.b) by using FFT.
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3) Calculate the zero state response given by the last
term of (29).

4) Estimate initial guess from (29), (32) and (33).

5) Estimate the variation

M
o= WO - 0)

k=0
M . .

+>_17(0) - I}(0)]
k=0

and if e/*! < §, then go to 6. Otherwise, go to 2.
6) Stop.
5. TIllustrative Examples

5.1 Pulse Responses Analysis of Nonuniform Trans-
mission Lines

To show the efficiency of our algorithm, consider a dou-
ble line prototype chip interconnect shown in Fig. 4 (a)

50Q

30 mil 30 mil

2l me L 2rme
U 70 mi1 | ' 10mil |
ey | |
-3~ T |
0.2 mil : |
_ | !
8 mil 40 mil
Ground Plate
(b)
[V]
1.0
i i —
0.0 0.1 04 05 [ng]
(©

Fig. 4 (a) Nonuniform transmission lines. (b) Geometrical
structure of the lines. (¢) Input voltage source.
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[volt]
1.200

input pulse

FFT method
10000 7\ spectral method

0.800 [
Active Line Responses
0.600 | near-end

0.400 [
far-end

0.200 |

0.000

0.00 0.20 0.40 0.60 0.80 1.00 1.20
[nsec]

(a)
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[volt]
0.050

FFT method
- spectral method

0.040 . o
Quiescent Line Responses

0.030

near-end

0.020

0.010 [ £

0.000

-0.010

-0.020 I

-0.030 [

L L L L L

0.00 0.20 0.40 0.60 0.80 1.00 1.20
[nsec]

(b)

Fig. 5 (a) Transient responses at the active line. (b) Transient responses at the quiescent

line.

[volt]
0.100 |

0.050 [

0.000

-0.050 |

-0.100

1.000

0.500 |

0.000 [

-0.500

-1.000 [

0.00 0.20 0.40 0.60 0.80 1.00
[nsec]

(b)

Fig. 6

a 10 1

2 CONVERGENCE RATIO

E (Nonuniform Transmission Lines)

«

s 0ok —— Re=10Q
-------- Re=0Q

® A (Active Line)
B (Quiescent Line)

104

iterations

(c)

(a) Nonuniform transmission lines with nonlinear termination. (b) Steady-state

responses of nonuniform transmission lines at the partitioning point. (c) Convergence

ratios.

and (b). The parameter matrices are as listed in table II
of reference [6], and we assume that these matrices are
piecewise linear in a distance z. The transient responses
to the input voltage of Fig.4(c) are computed using
our method with 256 frequency components shown in
Fig.5(a) and (b). For the numerical integration, the
step-sized is chosen by Az = [/300. The results are

compared with spectral method of Chebyshev interpo-
lation [6], where 64 terms of Chebyshev polynomials
and 1200 time points for numerical integration are taken
into account. We get the same results in using more
terms of Chebyshev polynomials, but inaccurate results
of the quiescent lines to less time points. The proposed
method is more accurate than spectral method, because
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nonlinear transmission line (10cm)

(a)

Transient Response

—_— =
0.0 0.1 \\&7 0.3 0.4 0.5

(c)

Fig.7 (a) A nonlinear transmission line.
Waveform. (d) Convergence ratios.

the quiescent lines do not respond until traveling wave-
form arrives at the far-end. The CPU time of the pro-
posed method is 11.7 seconds and the CPU time of spec-
tral method is 114.4 seconds on a Sun SPARC station
5. This shows that the proposed method is efficient.

5.2 Steady-State Analysis of Nonuniform Transmis-
sion Lines with Nonlinear Termination

Consider the same transmission lines in the previous ex-
ample terminated by a nonlinear subnetwork as shown
in Fig. 6 (a). The nonlinear resister is characterized by

I =10{exp(40V) — 1} [nA].

We calculated the steady-state response to the input volt-
age source of a sinusoidal waveform as follows:

e(t) = 1.0sin(wt)

where 2m/w = 0.5[ns]. The responses at the points A
and B are shown in Fig.6(b) to 256 frequency com-
ponents and T = 1.0[ns]. In this example, our algo-
rithm became unstable due to the strong nonlinearity.
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[volt]

0300 Nonlinear
P — Linear
0.200 Transient Respose
0.100 [
0.000 N <
0.300
0.200
Input Pulse
0.100
0.000 * - *
0.00 0.10 0.20 0.30 0.40 0.50
[nsec]
(b)
é 10!
£ CONVERGENCE RATIO
B (Nonlinear Transmission Line)
0 |
10 —— 1=100cm

iterations

(d)

(b) Transient Response at far-end. (c) Traveling

To improve the convergence, we introduced compensa-
tion resistor R. [15] at each far-end of the lines. The
efficiency is obvious in the convergence ratios as shown
in Fig.6(c). The CPU time is 50.4 séconds on a Sun
SPARC station 5.

5.3 Transient Analysis of Nonlinear Transmission
Line

Consider a nonlinear transmission line terminated by a
linear element shown in Fig.7(a). We assume that the
nonlinear characteristics are given by

01(i) = Lo(i — */3), Ge(v) = Co(v —v*/3)
@R(Z) = Ro(l + ’iB), iG(U) = G0<’U —+ ’03)

where

Lo = 0.003 [pH/cm], Cp = 0.01 [pF/cm]
Ry =0.04 kQ/cm], Go = 0.04 [mS/cm]

and Zy =0, Z;, = 10 [k©)].
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We calculated the transient response to the input
pulse given by

. T
0.3sin10wt (0Lt < — [ns])
o — 20
mn T
0 (t > — [ns])

20

for wT' = 2x. We consider 128 frequency components
in our analysis. The dotted line in Fig.7 (b) is the re-
sponse of a linear transmission line neglecting the non-
linear terms. For the numerical integration, the step-
sized is chosen by Az = [/120. We can see that they
give rise to large reflections from the source and termi-
nal ports. Observe that the reflections at source port are
reversed because the source impedance is zero, and those
at terminal port are not reversed because of the terminal
impedance 10 [k§2]. On the other hand, the solid line
shows the response of the nonlinear transmission line
obtained by our perturbation technique. We found that
the peaks of the waveforms are turned to the left. The
phase velocity of the traveling wave [19] is given by

do _ 1
dt L(#)C(v)
1
B i\/LOCO(l —i2)(1 — 1?)

which means that the higher part of the wave is faster
than the lower part of it. Thus, we can get the traveling
waveform as shown in Fig.7(¢). The convergence ra-
tios for the different length of the transmission line are
shown in Fig.7(d). The CPU time is 32.8 seconds on
a Sun SPARC station 3.

6. Conclusions and Remarks

We have presented algorithms for calculating the steady-
state responses of nonuniform transmission lines ter-
minated by a nonlinear subnetworks and a frequency-
domain perturbation technique for solving the nonlin-
ear transmission line. Our method can be efficiently ap-
plied to weakly nonlinear transmission line. We need
to improve the algorithm for analyzing the strong non-
linear transmission line.
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