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Quasi-Synchronization Phenomena in 
Chaotic Circuits Coupled by One Resistor 

Yoshifumi Nishio and Akio Ushida 

Abstract- In this ‘brief, synchronization phenomena observed from 
simple chaotic circuits coupled by one resistor are investigated. A simple 
three-dimensional autonomous circuit is considered as a chaotic sub- 
circuit’. By carrying out circuit experiments and computer calculations 
for two, three or four subcircuits case, various interesting synchroniza- 
tion phenomena of chaos, which are different types from the results 
reported before, are confirmed to be stably generated. Further, quasi- 
synchronization of asmmetric chaos are investigated with attention on 
the number of synchronization states. 

I. INTRODUCTION 

Coupled oscillators systems are good model to describe various 

nonlinear phenomena in the field of natural science and a number 
of excellent studies on mutual synchronization of oscillators have 
been carried out ([l]-[3] and therein). In [l], Kimura et al. in- 
vestigated synchronization phenomena observed from two van der 
Pol oscillators coupled by resistors and confirmed that the two 
oscillators synchronized at the opposite-phase. They considered that 
such synchronization occurred to minimize the current through the 
coupling resistors. Later they investigated three oscillators case and 
confirmed the generation of the three-ljhase synchronization [2]. Also, 
we investigated the synchronization phenomena of many oscillators 
with strong nonlinearity coupled by one resistor [3]. 

On the other hand, many nonlinear dynamical systems in the 
various fields have been clarified to exhibits chaotic oscillations and 
recently applications of chaos to engineering systems attract many 
researchers’ attentions, for example, chaos noise generator ([4] and 
therein), control of chaos [5], [6], synchronization of chaos [7]-[lo], 
and so on. Among the studies on such applications, synchronization 
of chaotic systems or signals is extremely interesting, because the 
chaotic solution is unstable and small error of initial values must 
be expanded as time goes. As far as we know, such phenomena 
have been firstly reported to be generated in simple real circuits 
by a group of Saito [7]. Since Pecora et al. have investigated such 
phenomena theoretically [8], many papers have been published until 
now. Further, the technique of synchronization of chaos is also 
applied to realize secure communication systems using chaos ([l l] 
and therein). However, almost all studies on synchronization of chaos 
treat only the case that chaotic signals generated from two identical 
chaotic systems are synchronized at the in-phase. Namely, as far 
as we know, another types of synchronizations of chaotic systems 
have not been reported at all. Though secure communication systems 
do not need another types of synchronizations, the investigation of 
various synchronizations of chaotic systems will open the way to 
another applications of chaos. 

In this brief, we investigate quasi-synchronization phenomena 
observed from simple chaotic circuits coupled by one resistor. In 
this paper we use the term synchronization of chaos as follows. 
Two chaotic signals (e.g., currents through inductors) which are 
the function of continuous time S1 (t) and S,(t) are said to be 

Manuscript received May 2, 1994; revised May 31, 1995. This paper was 
recommended by Associate Editor M. Ogorzalek. 

The authors are with the Department of Electrical and Electronic Engineer- 
ing, Tokushima University, Tokushima, 770 Japan. 

Publisher Item Identifier S 1057-7122(96)03915-3. 

1057-7122/96$05,OO 0 1996 IEEE 



492 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: mNDAMENTAL THEORY AND APPLICATIONS, VOL. 43, ~0. 6, JUNE ,996 

synchronized at the opposite phase, if S1 (t) + Sa (t) 21 0. For another 
types of synchronization states rigorous definition of synchronization 
seems to be extremely difficult. Then, we use the term quasi- 
synchronization. The term means that a chaotic signal from one 
subcircuit S;(t) and the other chaotic signal from the other subcircuit 
S, (t) ‘have the relation such as IS; (t) k  Sj (t - 2’) 1 < E where a 
constant T represents phase shift between two signals and a constant 
E is much smaller than the average amplitude of each chaotic signal. 
This is not mathematical definition and is used only for qualitative 
explanation of the observed phenomena. We consider a simple three- 
dimensional autonomous circuit as a chaotic subcircuit. This circuit 
is a symmetric version of the chaotic circuit proposed by Inaba et al. 
[12] and one of the simplest autonomous chaotic circuits. They used 
ideal piecewise linear model of. diodes in [12], but in this brief the 
V-I characteristics of the nonlinear resistor consisting of diodes are 
approximated by a smooth function. This is more real than piecewise 
linear approximation in the sense that every real elements in the natu- 
ral field are not piecewise linear. By carrying out circuit experiments 
and computer calculations for two, three or four subcircuits case, 
various interesting synchronization phenomena which are different 
types from the results reported before, namely opposite-phase quasi- 
synchronization of two chaos, three-phase quasi-synchronization of 
three chaos and various kinds of quasi-synchronizations of four chaos, 
are confirmed to be stably generated. Such types of synchronization of 
chaos have never been reported yet. Moreover, quasi-synchronization 
of asymmetric chaos are investigated with attention on the number 
of synchronization states. 

II. CIRCUIT MODEL : 

The circuit model is shown in Fig. l(a). In our sysiem N same 
chaotic circuits are coupled by one resistor. Each chaotic subcircuit 
is a symmetric version of the circuit model proposed by Inaba et 
al. [12]. It consists of three memory elements, one linear negative 
resistor and one nonlinear resistor, which is realized by connecting 
some diodes, and is one of the simplest chaotic circuits. This circuit 
exhibits bifurcation phenomena which are similar to those reported in 
[ 131, namely, bifurcation route from one-periodic attractor to chaotic 
attractor is explained as follows: 

One symmetric one-periodic attractor-(symmetry breaking tran- 
sition) -+ Two asymmetric one-periodic attractors-(period-doubling 
route) + Two asymmetric chaotic attractors~(symmetj recovering 
crisis) -+ One symmetric chaotic attractor. ‘. Fig. l(b) and (c) shows typical examples of chaotic attractors 
obtained from the chaotic subcircuit. In the following circuit experi- 
ments, the values of the inductors and the capacitor in each chaotic 
subcircuit are fixed and those values are measured as Li = 204.15 
mH f 0.073%, Lz = 9.933 mH f 0.030% and C = 0.034 25 @F 
f 0.29%. 

At first, we approximate the IV characteristics of the nonlinear 
resistor consisting of diodes by the following function. 

Od(ik) = m. (1) 
By changing the variables and parameters 

vk = azk 

b 

(a) 

(b) Cc) 

Fig. 1. Circuit model. (a) Chaotic circuits coupled by *one resistor. (b) 
Synimetric chaotic attractor (T ~650 R ). (b) Coexistence of two asymmetric 
chaotic attractors (T =554 ? ). Horizontal: 0.4 mA/div. Vertical: 1 V/div. 

the circuit equation is normalized and described as 

6k=/r(Zk+Yk)-ik-&Q 
j=l 

Sk = a{p(zk + Yk) - zk - f(Yk)} 

ik = Xk + Yk (k = 1,2,. . . , N) (3) 
where 

f(Yk) = 6. (4) 

For computer calculations, in order to consider the difference of 
real circuit elements, (3) is rewritten as follows: 

jZ1 

L?ik = @(XL + Yk) - zk - f(Yk)} 

ik = (1 + awk)(xk + Yk) (k = 1,2,. . . : N). (5) 

In the following computer calculations, the parameter values corre- 
sponding to the inductors and the capacitor are fixed as cy = 20.6 and 
AWk = O.OOS(k - 1) and (6) is calculated by using the Runge-Kutta 
method with step size At = 0.01. 

The circuit in Fig. l(a) can be regarded as a chaotic circuit version 
of the coupled van der Pol oscillators in [l]-[3]. Hence, this coupled 
chaotic circuits are expected to minimize the current through the 
coupling resistor (R) and to exhibit various types of synchronization 
phenomena. 

III. Two SUBCIRCUITS CASE 

In this section, we consider the case of N = 2, namely only two 
chaotic subcircuits are coupled by one resistor. 

At first, fix ,L?’ = 0.325(r = 650 0) and vary coupling pa- 
rameter y (A). Fig. 2 shows computer calculated results and the 
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(a) 

(b) 

(1) (2) 
Cd) 

(3) (4) 

Fig. 2. Synchronization of two symmetric chaos. /3 = 0.325 (r = 650 a). 
(a) y  = 0.0 (I? = On). (b) y  = 0.10 (R = 48R). (c) 
y = 0.22 (I3 = 2920). (d) y  = 0.35 (R = 5400). (1) zr versus 
2s. (2) zr versus zr. (3) 5s versus 2s. (4) Circuit experimental results. 
II versus 12. 0.4 mA/div. 

corresponding circuit experimental results. As shown in the figure 
two subcircuits generate symmetric chaos for this parameter value. 
However,  as r(R) increases, chaotic signals obtained from two 
subcircuits become to be synchronized at the opposite-phase. When 
y = 0.35 (R = 540 n), two chaotic signals seem to be completely 
synchronized at the opposite-phase. 

Second, let us investigate the synchronization of asymmetric chaos. 
In this case there exist two different types of synchronization of 
chaos as shown in Fig. 3. In the Fig. 3(a) two asymmetric chaos 
located symmetrically with respect to the origin are completely 
synchronized. We call this type of synchronization as symmetric 
synchronization. While, in the Fig. 3(b) two chaos tends to be 
synchronized at the opposite-phase but they cannot completely, 
because two asymmetric attractors are not located symmetrically. 
We call this type of synchronization as asymmetric synchronization. 
For small y  values (namely when coupling is small), asymmetric 
synchronization of chaos can coexist with symmetric synchronization 
of chaos. However,  for relatively larger y values as Fig. 3, the value 
of ,8 at which asymmetric synchronization stably exist must be larger 
than the value for symmetric synchronization. Namely, symmetric 
and asymmetric synchronizations cannot coexist for such y values. 
We can explain this reason physically as follows. For symmetric 
synchronization, two chaotic signals can be synchronized completely. 
Hence, the current through the coupling resistor is extremely small 

’ (1) 

(a) 

Fig. 3. Synchronization of two asymmetric chaos. y  = O.lO(R = 190 62). 
(a) Symmetric synchronization for p = 0.287 (r = 554 a). (b) Asymmetric 
synchronization for p = 0.308 (r = 586 0). (1) zr versus zs. (2) zr 
versus zr (3) 22 versus ~1. (4) Circuit experimental results. 11 versus Iz. 
0.4 mA/div. 

and the loss consumed by the coupling resistor may be negligible. 
While for asymmetric synchronization, two chaotic signals cannot be 
synchronized completely and hence some power must be consumed 
by the coupling resistor. Therefore, in order to generate chaotic 
attractors larger power must be supplied to the circuit by the negative 
resistor. 

IV. THREE SUBCIRCUITS CASE 

In this section, we consider the case of N = 3. In this case, 
three-phase quasi-synchronization of chaos can be observed. 

Fig. 4 shows the computer calculated results and the corresponding 
circuit experimental results. Each subcircuit exhibits symmetric chaos 
as shown in Figs. l(b) and 2(d(2)(3)) for these parameter values. In 
the two subcircuits case two symmetric chaos can be synchronized 
completely for larger y value, while three symmetric chaos cannot be 
synchronized completely even if y  is large. The reason is explained 
as follows. The circuit tends to be synchronized at the three-phase in 
order to minimize the current through the coupling resistor. However,  
the sum of chaotic signals cannot be zero even if the phase-difference 
between two signals is equal to 2~13, because each chaotic signal 
is not completely sinusoidal. The three-phase quasi-synchronization 
has two different phase-states, namely the phase of one phase-state 
is arranged as { 1, 2, 3}, while the phase of the other phase-state 
is arranged as { 1, 3, 2). We have also confirmed that one-periodic 
attractors bifurcate to chaotic attractors by varying the value of p 
keeping the three-phase quasi-synchronization as well as the two 
subcircuits case. 

Next, let us consider three-phase quasi-synchronization of three 
asymmetric chaos. Because each subcircuit has two asymmetric 
chaotic attractors located symmetrically with respect to the origin 
as shown in Fig. l(c), there exist 23 I= 8 different combinations of 
attractors coexist for three subcircuits. Further, each synchronization 
has two different phase-states as well as symmetric attractors case 
({ 1, 2, 3) and { 1, 3, 2)). Totally, 16 different synchronization states 
coexist. Fig. 5 shows two different synchronization states for three- 
phase quasi-synchronization. Note that when three attractors obtained 
from three subcircuits have the same shape, attractor is one-periodic 
as Fig. 5(a). There coexist four such synchronization states. While 
attractor is chaotic for the other 12 cases as Fig. 5(b). This reason 
is explained as well as the asymmetric synchronization for two 
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(4 

(2) (3) 

(b) 

Fig. 4. Three-phase quasi-synchronization of three symmetric chaos. (a) 
Computer calculated results. p = 0.305 and y = 0.05. (al) ~1 versus ~2. 
(a2) ~1 versus ~3. (a3) Time-waveforms. (b) Circuit experimental results. T = 
650 s1 and R = 50.8 0. (bl)(b2) 0.4 mA/div. (b3) Horizontal: 0.2 ms/div. 
Vertical: 1 mA/div. 

(4 

(b) 
Fig. 5. Three-phase quasi-synchronization of three asymmetric chaos (com- 
puter calculated results). p = 0.287 and y = 0.05. (a) One-period. (b) 
Chaos. 

subcircuits case. Namely, because the current through the coupling 
resistor for Fig. S(a) is larger than that for Fig. 5(b). As y increases, 
the synchronization states shown in Fig. 5(a) also bifurcates to chaos. 
For such parameter values, the attractor corresponding to Fig. 5(b) 
becomes to be unstable and there exist only four synchronization 
states. 

V. FOUR SUBCIRCUITS CASE 

In this section, we consider the case of N = 4. 
At first, let us investigate the quasi-synchronization phenomena 

of symmetric chaos. In this case we observed three different types 
of quasi-synchronization phenomena; in and opposite-phases quasi- 
synchronization, two-pairs of opposite-phase quasi-synchronizations, 
and self-switching of three opposite-phase quasi-synchronizations. 
These three types of q&i-synchronizations were observed for dif- 
ferent parameter values and they cannot coexist. 

In and opposite-phases quasi-synchronization is observed for rel- 
atively larger y values. This quasi-synchronization is shown in 
Fig. 6(a). If we take the subcircuit one as reference circuit, one of 
remaining threk subcircuits is almost synchronized at the in-phase 
and the remaining two subcircuits are almost synchronized at the 

@I 

Fig. 6. Quasi-synchronization of four symmetric chaos (computer calculated 
results). /3 = 0.30. (a) In and opposite-phases quasi-synchronization for y = 
0.40. (b) Two pairs of opposite-phase quasi-synchronizations for and y = 
0.10. 

opposite phase. There coexist three different’ phase-states for this 
type of quasi-synchronization. 

Two pairs of opposite-phase quasi-synchronizations are shown 
in Fig. 6(b). Two of four subcircuits are almost synchronized at 
the opposite-phase. Also the remaining two subcircuits are almost 
synchronized at the opposite-phase. However,  two opposite-phase 
quasi-synchronizations are independent. Before we carried out ex- 
periments, we had considered that the number of the combination of 
subcircuits must be three because of the symmetry of the coupling, 
namely (1, 2) and (3, 4}, {1,3 } and (2, 4) and (1, 4) and (2, 
3). However,  the combination seems to be decided by the difference 
of real circuit elements and we observed only one combination for 

.both of cbmputer calculations and circuit experiments. For computer 
calculations x1 and .XZ are synchronized at the opposite phase and ~3 
and ~4 are also synchronized, but 21 and ~3 are independent. Other 
combination states can be observed only in the long transient states 
and they are eventually attracted to the state in Fig. 6(a). For circuit 
experiments 11 and 1s are synchronized at the opposite phase and 12 
and 14 are also synchronized, but 11 and 1~ are independent. Other 
combination states are not observed. 

Self-switching of three opposite-phase quasi-synchronizations is 
that three phase-states corresponding to the two pairs of opposite- 
phase quasi-synchronizations are switched alternately. The order of 
the appearance of three phase-states is truly chaotic. Further switching 
period is also chaotic, namely a state may be switched to the next 
state instantly and a state may be switched after about one second. 
Because of the difference of real circuit elements, stability of three 
phase-states must be different and the difference must influence the 
switching period. We also observed such quasi-synchronizations from 
computer calculations. The detailed results on this phenomenon will 
be discussed elsewhere. 

Next, let us investigate the quasi-synchronization phenomena of 
asymmetric chaos. In this case we observed only the two-pairs of 
opposite-phase quasi-synchronization. The in and opposite-phases 
or the self-switching cannot be observed. As well as symmetric 
chaos, the combination ‘the synchronized subcircuits seems to be 
decided by the difference of real circuit elements and we observed 
only one combination; { 1, 2) and (3, 4). Because two asymmetric 
attractors coexist in each subcircuit, we had considered that there 
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(4 

Cd) 

(e) 

Fig. 7. Two pairs of opposite-phase quasi-synchronizations of four asymmetric chaos (computer calculated results). /3 = 0.285 and y = 0.10. (a) and (b) 
Two pairs of asymmetric synchronizations. (c)-(f) Two pairs of symmetric synchronizations. 

exist 24 = 16 different synchronization states. However,  we ob- 
served only six different synchronization states for both of computer 
calculations and circuit experiments as shown in Fig. 7. The six 
different synchronization states are divided into two groups, namely 
two pairs of asymmetric synchronizations [Fig. 7(a) and (b)] and two 
pairs of symmetric synchronizations [Fig. 7(c)-(f)]. As well as two 
subcircuits, these two different types of quasi-synchronizations cannot 
coexist for larger y values. 

We enumerate the synchronization phenomena introduced in this 
paper. The numbers in ( ) denote the number of the coexisting 
synchronization states. 

l 2 subcircuits case 
VI. CONCLUSION 

In this brief, we investigated quasi-synchronization phenomena 4 Opposite-phase synchronization of symmetric chaos (1) 
observed from simple chaotic circuits coupled by one resistor. By b) Symmetric synchronization of asymmetric chaos (2) 
carrying out circuit experiments and computer calculations for two, cl Asymmetric synchronization of asymmetric chaos (2) 

three or four subcircuits case, we confirmed that various kinds of 
quasi-synchronization phenomena of chaos were stably observed. 

We would like to emphasize that almost synchronization phenom- 
ena in this paper had not been reported yet. Moreover such interesting 
phenomena have been observed from real circuit model made up 
easily. 
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l 3 subcircuits case 

4 Three-phase quasi-synchronization of symmetric chaos 
(2) 

b) Three-phase quasi-synchronization of asymmetric chaos 
(same shape 4, not same shape 12) 

l 4 subcircuits case 

4 In and opposite-phases quasi-synchronization of sym- 
metric chaos (3) 

b) Two pairs of opposite-phase quasi-synchronizations of 
symmetric chaos (1) 

c) Self-switching of three opposite-phase quasi- 
synchronizations of symmetric chaos (1) 

d) Two pairs of asymmetric synchronization of asymmetric 
chaos (2) 

e) Two pairs of symmetric synchronization of asymmetric 
chaos (4) 

For five or more subcircuits case, we could not observe any 
synchronization phenomena of chaos. We have confirmed that five 
or more van der Pol oscillators could not be synchronized when 
the nonlinearity is weak [3]. Because the chaotic signals obtained 
from the present subcircuit are similar to sinusoidal wave, five or 
more chaotic subcircuits could not be synchronized. If we use circuits 
generating chaotic waveform looks like rectangular wave, they may 
be synchronized. 

Though we omit to introduce some results for another chaotic 
circuits in this paper, we have carried out circuit experiments for some 
types of chaotic circuits and have confirmed the generation of similar 
types of quasi-synchronization of chaos. Some examples of the asym- 
metric synchronization and the three-phase quasi-synchronization 
for another chaotic circuit can be seen in [14]. Hence, various 
interesting quasi-synchronization phenomena introduced in this brief 
are considered to be generated in various coupled systems. Namely, 
quasi-synchronization phenomena of chaos are not special phenomena 
observed from only a few systems, but common phenomena as well 

I as chaos. 
We consider that dimension of chaotic attractors must be deeply 

related with quasi-synchronization of chaos and that it will be 
very useful to classify quasi-synchronization’ of chaos. Hence, the 
analysis of Lyapunov exponents of quasi-synchronization of chaos is 
extremely important as our future research. Further, we must establish 
the method for theoretical analysis of the quasi-synchronizations of 
chaos. We hope that our study would motivate the establishment of 
analyzing method for-quasi-synchronizations of chaos and that the 
phenomena in this brief would be applied to various engineering 
systems. 
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Robustness of Pole-Clustering in a Ring 
for Structured Perturbation Systems 

Chun-Hsiung Fang and Chun-Lin Lu 

Abstract-A simple approach is proposed to ensure that all poles of the 
uncertain system are clustered in a prescribed ring. The explicit bounds 
on linear time-invariant structured perturbations are obtained. Under 
these allotiable highly structured perturbations, both stability robustness 
and certain performance robustness will thus be ensured. In the literature, 
as far as we are aware, little effort has been devoted to investigating 
pole-clustering robustness in such region. 

NOTATIONS 

First of all, we introduce some notations which will be used 
throughout this brief. 

c field of complex number 
k(M) the ith eigenvalue of M E C” xn 
P(M) spectral radius of matrix M E C- ’ n 

determinant of matrix M E C”‘” 
magnitude of z E C 
the (i, j) th element of matrix M 
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