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Multimode Chaos in Two Coupled Chaotic Oscillators

with Hard Nonlinearities

SUMMARY In this study, multimode chaos observed from
two coupled chaotic oscillators with hard nonlinearities is in-
vestigated. At first, a simple chaotic oscillator with hard non-
linearities is realized. It is confirmed that in this chaotic os-
cillator the origin is always asymptotically stable and that the
solution, which is excited by giving relatively large initial con-
ditions, undergoes period-doubling bifurcations and bifurcates
to chaos. Next, the coexistence of four different modes of oscil-
lations are observed from two coupled chaotic oscillators with
hard nonlinearities by both of circuit experiments and computer
calculations. One of the modes of oscillation is a nonresonant
double-mode oscillation and this oscillation is stably generated
even in the case that oscillation is chaotic. Namely, for this oscil-
lation mode, chaotic oscillation and periodic oscillation can be
simultaneously excited. This phenomenon has not been reported
yet, and we name this phenomenon as double-mode chaos. Fi-
nally, the beat frequency of the double-mode chaos is confirmed
to be changed by varying the value of the coupling capacitor.
key words: chaotic circuit, hard nonlinearity, coupled oscillator,
multimode oscillation

1. Introduction

Coupled oscillators systems are good model to describe
various nonlinear phenomena in the field of natural
science and a number of excellent studies on mutual
synchronization of oscillators have been carried out
(e.g.[1]-[4]). Oscillators containing a nonlinear resis-
tor whose v — ¢ characteristics are described by fifth-
power nonlinear characteristics are known to exhibit
hard excitation[5],[6]. Namely, the origin is asymp-
totically stable and an proper initial condition, which
is larger than a critical value, is necessary to generate
the oscillation. Such an oscillator is often called as
hard oscillator or said to have hard nonlinearity. Datar-
dina and Linkens have investigated two identical oscil-
lators with hard nonlinearities coupled by a inductor as
shown in Fig.1(a) or equivalently Fig.1(b)[2]. They
have confirmed that nonresonant double-mode oscilla-
tions, which could not occur for the case of third-power
nonlinearity, were stably excited in the coupled system.
They have also confirmed that four different modes co-
exist for some range of parameter values; zero, two
single-modes, and a double-mode. Recently, Yoshinaga
and Kawakami have investigated the double-mode os-
cillation observed from an arbitrary number of identical
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oscillators with hard nonlinearities coupled by induc-
tors as a ring [4]. They confirmed the envelopes of non-
resonant double-mode oscillations were synchronized.
As these studies, coupled systems of oscillators with
hard nonlinearities exhibit interesting synchronization
phenomena of nonresonant double-mode oscillations as
well as single-modes.

On the other hand, many nonlinear dynamical sys-
tems in the various fields have been clarified to exhibits
chaotic oscillations and recently applications of chaos
to engineering systems attract many researchers’ atten-
tions[7]. Among the studies on such applications, syn-
chronization of chaotic systems or signals is significant
because such a technique is necessary to realize com-
munication systems using chaos. Since the chaotic so-
lution is unstable and small error of initial values are
expanded as time goes, the synchronization of chaos
seems to be extremely interesting phenomena. Fur-
ther, because coupled chaotic oscillators are good ex-
ample of higher-dimensional systems which have been
also drawing recent attentions, investigating what kind
of phenomena are observed from such systems would
contribute to develop the study of nonlinear dynamical
systems. We have already studied synchronization phe-
nomena observed from some types of coupled chaotic
oscillators [8]—[ 10]. In the studies it has been confirmed
that quasi-synchronization occurred even if each oscil-
lator exhibits chaos. However, since we did not con-
sider oscillators with hard nonlinearities in the previous
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Fig. 1 (a) Coupled oscillators studied in Ref.[2]. (b) Equiva-
lent circuit.
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studies, we have not obtained any results about double-
mode oscillations.

In this study, we investigate multimode chaos ob-
served from two coupled chaotic oscillators with hard
nonlinearities. At first, a simple chaotic oscillator with
hard nonlinearities is realized. It is confirmed that
in this chaotic oscillator the origin is always asymp-
totically stable and that the solution, which is excited
by giving relatively large initial conditions, undergoes
period-doubling bifurcations and bifurcates to chaos.
Next, the coexistence of four different modes of oscilla-
tions are observed from two coupled chaotic oscillators
with hard nonlinearities by both of circuit experiments
and computer calculations. One of the modes of oscilla-
tion is a nonresonant double-mode oscillation and this
oscillation is stably generated even in the case that os-
cillation is chaotic. Namely, for this oscillation mode,
chaotic oscillation and periodic oscillation can be si-
multaneously excited. This phenomenon has not been
reported yet, and we name this phenomenon as double-
mode chaos. Finally, the beat frequency of the double-
mode chaos is confirmed to be changed by varying the
value of the coupling capacitor.

2. Chaotic Oscillator with Hard Nonlinearity

Figure 2 shows the realization of chaotic oscillator with
hard nonlinearity. If we remove a resistor R4 and a pair
of diodes connected in parallel with Ry, the circuit is
the symmetric version of the chaotic circuit proposed by
Inaba et al.[11].

At first, we approximate the i — v characteristics of
the diodes in the circuit as two-segment piecewise linear
function as shown in Fig. 3.

i) ={ 3 RSV g

In this case, the 7 — v characteristics of the nonlinear
resistor including a linear negative resistor and of the
nonlinear resistor consisting of six diodes are described
by three-segment piecewise linear functions as shown in
Fig. 4.

Vi (i>J)
oo () = (% - ) i (i) ©
-V —ri (t<—=J),
2Ry +rq.,
( where J = “Rarg |4 > ,
3V e (1> 2V/rg)
vp(i) = 5ra(d) (i) < 2V/rq) &)
-3V (i < ~2V/rq).

The equation governing the circuit in Fig.2 is de-
scribed as follows:
di
Ll -Z =

i —UwRi—UD(i+I)

IEICE TRANS. FUNDAMENTALS, VOL. E79-A, NO. 2 FEBRUARY 1996

T La Ly 1

Rd §R

—D-pH
i
I

N
=

N

Fig. 2 Realization of chaotic oscillator with hard nonlinearity.
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Fig. 3  Approximation of the i — v characteristics of the diode.
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Fig. 4 The i — v characteristics of (a) the nonlinear resistor in-
cluding a linear negative resistor and (b) the nonlinear resistor
consisting of six diodes.
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(a) Typical example of chaotic attractors (Ly = 100mH, Lz = 200mH, C =

0.068 uF, R =509, Rg = 2kQ and r = 1.47kQ). (b) Corresponding computer calculation
(8=0.5,~=0.88,6§ =004, a = 1.6 and b = 40). (c) Coexisting point attractor at the

origin (parameter values are the same as (b)).

al

25 = —v.(I) —vp(i+ 1)

o= =i (4)

By changing the variables and parameters,

C | C
i I Vz, T, Vy, v=Vg,

d
t=+/L1CT, “P = —
dr
)

Ly | C iy
_ — = —_— :R —_
ﬂ L27 fy T L17 Ll’
_ Rara /g, p—d /Q, (5)
2R +7ra V L1 2V Ly

(4) is normalized as

a

= —z— 62— fp(z+y)
§ = —Bf+) = Bfo(w +v)
e (©)
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where the functions f. and fp corresponds to v, and
vp, respectively, and are represented as follows.

1—vz (z > 1/a)

@)= @—e - (ol < 1/a) @
—1—~z (z < —1/a),
3 oo (z>1/b)

fo(z)=< 3bx (jz| £1/b) (8)
-3 - (z<-1/b).

By circuit experiments and computer calculations,
we confirmed that this circuit have the following proper-
ties. The origin is always stable and it is surrounded by
an unstable limit cycle. Out of the unstable limit cycle,
there exists the other stable attractor. As a parameter «y

() increases continuously, this attractor bifurcates from
one-periodic limit cycle to chaos via period-doubling
bifurcations.

Figure 5 (a) shows a typical example of chaotic at-
tractors obtained from the circuit in Fig.2. Figure 5 (b)
is the corresponding computer calculated result. Fur-
ther, Fig. 5 (c) shows that the point attractor at the ori-
gin coexist with the chaotic attractor in Fig.5 (b).

3. Two Coupled Chaotic Oscillators

The main object of this paper is to investigate two
chaotic oscillators with hard nonlinearities coupled by
a capacitor. The coupled model is shown in Fig. 6. This
circuit is considered to be a chaotic circuit version of
the coupled oscillators in Fig. 1 (b).

The equation governing the circuit in Fig. 6 is de-
scribed as follows:

T = —z — a(z1 + 22) — 6z — fo(zk + Yk)

yr = —Bfr(ye) — Bfp(zr +yr)

Z'k = X (9)
(k=1,2)

where a = C/Cjy is a new parameter corresponding to
the coupling. This circuit equation includes four three-
segment piecewise-linear functions. Namely, it is 81-
regions piecewise-linear ordinary differential equation.

In the following circuit experiments, the parame-
ter values are fixed as Ly = 100mH, Ly, = 200mH,
C = 0.068uF, R = 50Q and Ry = 2k and only Gy
and r are varied as a control parameter. While for the
computer calculations, the parameter values are fixed as
B3=0.5,6=0.04,a = 1.6 and b = 40. and « and « are
varied. Further, (9) is integrated by using the Runge-
Kutta method with step size h = 0.005.
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Fig. 6 Two chaotic circuits with hard nonlinearities coupled by a capacitor.

4. Multimode Chaos

From the coupled circuit in Fig. 6, we observed that
four different oscillation states coexist; zero, in-phase
single-mode, anti-phase single-mode and double-mode.

Zero means that both of two oscillators are not ex-
cited. This state is always stable and relatively small
initial values are attracted to this state. In the follow-
ing we do not show any figures of this state, because it
is trivial.

In-phase single-mode means that the two oscillators
are synchronized at the in-phase. When r increases,
the attractor on i; — i, plane is inflated as shown in
Fig.7(1). However, this state is always one-periodic
for the parameter values we treated.

Anti-phase single-mode means that the two os-
cillators are synchronized with 7 phase difference.
When r increases, this oscillation mode bifurcates from
one-periodic state to chaotic state while holding syn-
chronization via the following route. 1-period with
symmetry (Fig.7(2a)) — I-period with asymmetry
(Fig.7(2b)) — (period-doubling bifurcation) — 2-
period with asymmetry — 2" period with asymme-
try — chaos with asymmetry (Fig.7(2c)) — chaos
with symmetry (Fig. 7 (2d)). The observed states of this
anti-phase single-mode are similar to those of uncou-
pled chaotic oscillator with a slight parameter shift.
Namely, for the parameter value in Fig. 7 (a), the uncou-
pled chaotic oscillator exhibits one-periodic attractor
with symmetry. For Fig.7(b), it exhibits one-periodic
with asymmetry. Chaos with asymmetry for (c¢) and
chaos with symmetry for (d).

Double-mode means that above two single-mode
oscillations (namely in-phase and anti-phase) are simul-
taneously excited. This mode of oscillation changes its
character according to the character of contained single-
mode oscillations. Namely, if both of in-phase and
anti-phase oscillations are periodic, the double-mode is
simple quasi-periodic oscillation; two-torus (Figs. 7 (3a)
and 7(3b)). However, if the in-phase oscillation is
periodic and the anti-phase oscillation is chaotic, the
double-mode oscillation must contain both of periodic
and chaotic oscillations. As a result, the oscillation
waveform looks like amplitude-modulated waveforms
of chaotic signal (Figs.7(3c) and 7(3d)). This phe-
nomenon has not been reported yet and we name this

@

Fig. 7 Bifurcation of three different oscillation modes. Hori-
zontal axis is 41 (1mA/div.) and Vertical axis is i3 (1 mA/div.).
Co=0.34uF. (a) r =1.20kQ. (b) r = 1.25kQ. (c) r» = 1.36 k2.
(d) » = 1.41kQ. (1) In-phase single-mode. (2) Anti-phase single-
mode. (3) Double-mode.

as double-mode chaos.

Figure 8 shows time waveforms and attractors onto
41—y plane of three different oscillation modes (param-
eter values are the same as Fig.7(d)). We can see that
there is difference between frequencies of two single-
modes, namely the frequency of in-phase single-mode
is higher than that of anti-phase single-mode. Though
we cannot give physical explanation, we consider that
this difference of frequency is deeply related with the
observed bifurcation phenomena of each synchroniza-
tion mode. Further, we can confirm that the envelopes
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Fig. 8 (a) Time waveforms and (b) attractors observed from
a subcircuit. Cp = 0.34 uF and » = 1.41kQ. (1) In-phase sin-
gle-mode. (2) Anti-phase single-mode. (3) Double-mode.

®3)
Fig. 9 Computer calculated results corresponding to Fig. 7 (d).

Horizontal axis is z1 and Vertical axis is 2. « = 0.25 and

~ = 0.80.

of double-mode chaos are almost synchronized with =
phase difference. This phenomenon is chaotic version
of the results in Ref.[4] and extension to large num-
ber of oscillators is one of interesting future problems
on multimode chaos. Figures 9 and 10 are computer
calculated results corresponding to Figs.7 and 8, re-
spectively. Circuit experimental results and computer
calculated results are agree well qualitatively.

Finally, the beat frequency of double-mode chaos
can be changed by varying the value of the coupling ca-
pacitor Cy (or o). Figures 11 and 12 show the results
obtained by using another values of Cy (or ).

5. Concluding Remarks
In this study, we have invéstigated multimode chaos ob-

served from two coupled chaotic oscillators with hard
nonlinearities. We confirmed that double-mode chaos
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Fig. 10 Computer calculated results corresponding to Fig. 8.
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Fig. 11 Change of beat frequency of double-mode chaos.
(1) Co = 0.24uF and r = 1.34kQ. (2) Co = 0.27uF and
r = 1.38k0. (3) Co = 0.41 uF and r = 1.38kQ.
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Fig. 12 Computer calculated results corresponding to Fig.11.
(1) @ = 0.330 and v = 0.740. (2) @ = 0.275 and v = 0.755.
(3) @ = 0.200 and v = 0.800.

coexisted with two single-modes and zero by circuit ex-
periments and computer calculations.

We consider that there remain many interesting
problems on multimode chaos. In the present circuit
model, in-phase single-mode was confirmed to be al-
ways one-periodic. If in-phase is chaotic as well as
anti-phase, double-mode oscillation must contain two
different kinds of chaos. Although we tried to search
parameters for which such a phenomenon are observed,
we could not find. Another chaotic circuits may exhibit
such oscillation. Further, extension to large number of
oscillators is expected to a triple-mode chaos generator
and is also attractive problem.
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