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SUMMARY In this study, we propose a system of N Wien-
bridge oscillators with the same natural frequency coupled by
one resistor, and investigate synchronization phenomena in the
proposed system. Because the structure of the system is differ-
ent from that of LC oscillators systems proposed in our previous
works, this system cannot exhibit N-phase oscillations but 3-
phase and in-phase oscillations. Also in this system, we can get
an extremely large number of steady phase states by changing the
initial states. In particular, when N is not so large, we can get
more phase states in this system than that of the LC oscillators
systems. Because this system does not include any inductors and
is strong against phase error this system is much more suitable
for applications on VLSI compared with coupled system of van
der Pol type LC oscillators.

key words:  coupled oscillators, Wien-bridge oscillator, phase
states, VLSI implementation

1. Introduction

There have been many investigations of the mutual syn-
chronization of oscillators ([1]-[8] and therein). Endo
et al. have analyzed the systems of large number of cou-
pled van der Pol oscillators[1]—[3]. Kimura et al. have
confirmed that two oscillators coupled by one resistor
are synchronized at opposite phase[4] and three oscil-
lators coupled by one resistor are synchronized at 3-
phase[5]. Moreover, we have investigated the synchro-
nization phenomena in N oscillators coupled by one re-
sistor [6]—[8]. When the nonlinearity is the third-power
characteristic, N-phase oscillations are stably excited
and the system has (N — 1)! phase states[6]. When the
nonlinearity is the fifth-power characteristic, not only N
but also N —1, N —2,- .3, 2-phase oscillations are sta-
bly excited and the system has much more phase states
than that of system with the third-power nonlinear char-
acteristics [ 7]. Moreover we have proposed the coupled
oscillators networks [9] based on the system described in
Ref.[6] for cellular neural networks (CNN)[10]. Thus
the coupled oscillators systems are expected to applica-
tions to neural networks and large scale memories.

In this study, we investigate synchronization phe-
nomena in the Wien-bridge oscillators with the same
natural frequency coupled by one resistor by both
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of computer calculations and circuit experiments. In
this system the synchronization phenomena which have
never been seen can be observed; only in-phase and 3-
phase oscillation can be seen in spite of N. This system
can generate a large number of steady states and has the
similar structure as the systems described in Refs.[6]—
[8]. Further, this system does not include any inductors
and is strong against phase error. Hence, this system is
much more suitable for applications on VLSI compared
with coupled system of van der Pol type LC oscillators.

2. Circuit Model

Recently, we have reported synchronization phenomena
in N van der Pol LC oscillators with the same nat-
ural frequency coupled by one resistor. In the sys-
tems, various synchronization phenomena can be sta-
bly observed, because they tends to minimize the cur-
rent through the coupling resistor. When the non-
linear characteristics are the third-power, we can see
N-phase oscillations. When we take the waveform
observed in one oscillator as a reference signal, the
other oscillators can take any phase differences among
¢ = 2kn/N (k=1,2,---,N —1). Therefore, this sys-
tem can take (N —1)! phase states. This means that this
system can take 479,001,600 steady states when N = 13.
On the other hand, when the nonlinear characteristics
are the fifth-power, we can see not only N-phase oscil-
lation but also N —1, N —2,-- -, 2-phase oscillations by
choosing the initial states of oscillators. In this system,
we can take much more steady states than that of the
system with the third-power nonlinear characteristics.
For example, we can take 792,712,283 steady states for
N =13.

In this study we investigate N Wien-bridge oscil-
lators shown in Fig. 1 with the same natural frequency
coupled by one resistor. The circuit model is shown
in Fig.2. We consider the negative-feedback amplifiers
have nonlinear gain characteristics approximately as fol-
lows because of the saturation characteristics of the op
amps.

U;/c = g1Vk3 — 937)133 (1)

So circuit equations are described as follows,
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Fig. 1 Wien-bridge oscillator.
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By changing variables,

t= RCT,
wy = I3 p=3
k 393 k1s Yk 33 k25
a1 — 3 r 3
Zl — v o = — — —
k 393 k3, R’ g g1

Equation (2) is normalized as
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(4)

In Eq.(4), « is coupling factor and ¢ is the strength of
nonlinearity. Because the condition for oscillation of
the Wien-bridge oscillators is g1 > 3, the strength of
nonlinearity € must be larger than 0. When « and ¢ are
sufficiently small, the waveform of each oscillator can
be regarded as almost purely sinusoidal, and we can
rewrite Eq.(4) as described below.

’ N
T + Tk :z—:(l—mkz)ik —OZZ(J'ZJ‘ —ij) (5)

i=1

Comparing with Eq.(5) in Ref.[8], we notice the ex-
istence of the term ) &;. So we can predict that the
dynamics of this EC oscillators’ system should be dif-
ferent from that of the system with LC' oscillators shown
in Ref.[8].

3. Circuit Experiments and Numerical Calculations

Next, in order to confirm the phenomena observed from
the proposed circuit, we show examples of the circuit ex-
perimental results and the corresponding results of the
numerical calculations for the case of N = 25 (Figs. 3—
6). On computer calculations, we have to consider the
differences among the natural frequencies of real oscil-
lators, so normalized Eq. (4) is written as follows.

T =Yg — (1 -I—BAwk)Zk

R 2
Y = € Zk_g — Yk + 22

N
zk:xk+ag Z;5
=1

(k=1,2,---,N)

(6)

On circuit experiments, we take R; = 4.7k and Ry =
14.7kS2.

From these results, we can see the different type
of synchronization from N-phase oscillation. When
N = 2, we can see only the opposite phase oscilla-
tion in the system with LC oscillators. But in the pro-
posed system, we can see synchronization with in-phase
(Figs. 3 (a), (b)) and 120° phase shift (Figs.3(c), (d)).
When N = 3, we can see 3-phase oscillation just like the
system with LC oscillators shown in Figs. 4 (a), (b) and
in-phase and 120° phase shift synchronization shown in
Figs.4(c), (d). When N = 4, we can see the opposite
phase oscillations in the system with LC oscillators as
shown in Ref.[8]. But in the proposed RC systems,
we can see 3-phase and in-phase synchronization. In
Figs. 5 (a), (b), v11, v21 and vs; make 3-phase oscillation
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Fig. 3 Experimental and numerical results for the case of
N =2 (C =0.015uF, R = 10kQ, r = 2002, horizontal scale:
200 psec/div, vertical scale: 5 V/div, a« = 0.02, € = 1.5).
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(a) Experimental result.

(c) Experimental result.

(d) Numerical result.

Fig. 4 Experimental and numerical results for the case of
N =3 (C =0.015uF, R = 10kQ, r = 200}, horizontal scale:
200 psec/div, vertical scale: 5 V/div, o = 0.02, € = 1.5).

and v1; and vy synchronize at in-phase. In Figs. 5 (¢),
(d), v11 and w31 synchronize at 120°, and vy and vo;
synchronize at in-phase. Moreover, we carried out the
circuit experiments and numerical calculations for the
case of N = 5,6. From Figs.6 and 7, we can see the

1437

00w P S.00v —0.00s 200
/R

3 / //_\\,;////

v1

Soderer g

/¢

Ne

X3t
AN

Py

3
< «

(b) Numerical result.

)

Ao n
~
X1

Uy vy
\\ N
- e
( g
Fefimloo o ..,u& n
.
Xzl

)

<

)
(

VAN

(c} Experimental result. (d) Numerical result.

Fig. 5 Experimental and numerical results for the case of
N =4 (C =0.015uF, R = 10k, 7 = 200%2, horizontal scale:
200 psec/div, vertical scale: 5 V/div, a = 0.02, e = 1.5).

similar phenomena with N = 4. These synchronization
patterns are determined by the region in phase space of
the initial voltage of each capacitor. We have never seen
these phenomena in any coupled oscillators systems as
far as our knowledge goes. We should notice that these
phenomena can be observed in the system only with
strong nonlinearity.

Because the type of synchronization is different
from the case with van der Pol LC oscillators, the num-
ber of phase states must be different from previous case.
In this system, we can summarize the way of synchro-
nization that when we take one oscillator as a reference
signal, the other oscillators the phase of

Q)

2_71'
3 3
while ¢ = 2kx/N (k=1,2,---,N — 1) in the system
with LC oscillators. So when N oscillators are coupled,

we can consider the number of the phase states P as
follows.

¢=0,+



1438

S.00v_ 2 5.00v —o.o0s 200

/\ i

Xt

i

V2

.~ -
t
!

V3
-
senf F)4 PO
X31

c;

A‘/*\ R _:i : | : 8
o // ‘\\\\ : // L
£ p N S
" ‘ Nz
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Fig. 6 Experimental and numerical results for the case of
N =5 (C =0.015uF, R =10k, r = 20092, horizontal scale:
200 psec/div, vertical scale: 5 V/div, o = 0.02, ¢ = 1.5).

Py =31 ‘ (8)

From this equation, we can see this system have much
more phase states than that of the system with van der
Pol LC oscillators when N is not so large. For com-
parison, we show the number of the phase states of this
system and the systems with van der Pol type LC oscil-
lators in Table 1.

When N is large, the number of the phase states
Px becomes smaller than that of the system with van
der Pol LC oscillators. But on cellular neural networks,
the number of connections should be small because of
their feature|[9]. So when we use these oscillators sys-
tems as a structural element of cellular neural network,
the number of coupled oscillators by one resistor should
be small. Moreover, the phase differences between the
oscillators do not become smaller but keep constant
phase differences when the number of oscillators cou-
pled becomes larger, while the phase differences become
smaller in the system with LC oscillators. So we can
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Fig. 7 Experimental results for the case of N = 6 (C =
0.015 uF, R = 10kQ, r = 200, horizontal scale: 200 usec/div,
vertical scale: 5 V/div).

Table 1 Comparison of the number of phase states.
) ) with LC oscillator

N || with RC oscillator ["Third-power | Fifth-power

2 3 1 2

3 9 2 6

4 27 3 18

5 81 24 70

6 243 45 280

13 531,441 479,001,600 | 792,712,283

construct the system in which phase errors by noise are
hard to occur when we use the system as a memory with
coupling many oscillators. Therefore this system is very
suitable for a structural element of cellular neural net-
work and a large scale memory.

4. Conclusions

In this study, we have investigated synchronization phe-
nomena in the Wien-bridge oscillators coupled by one
resistor by both of computer calculations and circuit ex-
periments. In this system, we can see only 3-phase and
in-phase oscillations in spite of N. This phenomenon
has never been seen in any other coupled oscillators
systems as far as we know.

Because this system does not include any inductors
and is strong against phase error this system is much
more suitable for applications on VLSI compared with
coupled system of van der Pol type LC oscillators. Our.



LETTER

future research is realization of memory or CNN using
coupled oscillators system studied in this letter.

References

(1]

2]

(3]

(4]

(5]

T. Endo and S. Mori, “Mode analysis of a multimode lad-
der oscillator,” YEEE Trans. Circuits & Syst., vol.CAS-23,
no.2, pp.100—113, Feb. 1976.

T. Endo and S. Mori, “Mode analysis of a two-dimensional
low-pass multimode oscillator,” IEEE Trans. Circuits &
Syst., vol.CAS-23, no.9, pp.517-530, Sept. 1976.

T. Endo and S. Mori, “Mode analysis of a ring of a large
number of mutually coupled van der Pol oscillators,” IEEE
Trans. Circuits & Syst., vol.CAS-25, no.l, pp.7-18, Jan.
1978. ‘
H. Kimura and K. Mano, “Some properties of mutually
synchronized oscillators coupled by resistances,” Trans.
IECE, vol.48, no.10, pp.1647—1656, Oct. 1965.

H. Kimura and K. Mano, “Three-phase oscillators by re-

6]

(7]

(8]

[9]

[10]

1439

sistive coupling,” IECE Tech. Rep. of Nonlinear Theory,
NLP64.2-20, 1965.

Y. Nishio and S. Mori, “Mutually coupled oscillators with
an extreme large number of steady states,” Proc. of IS-
CAS 92, pp.819-822, May [992.

S. Moro, Y. Nishio, and S. Mori, “Coupled oscillators
with a huge number of steady states —for a structural ele-
ment of a cellular neural network,” Proc. of ECCTD 93,
pp.27-32, Aug. 1993.

S. Moro, Y. Nishio, and S. Mori, “Synchronization phe-
nomena in oscillators coupled by one resistor,” IEICE
Trans. Fundamentals, vol.E78-A, no.2, pp.244-253, Feb.
1995.

Y. Nishio, S. Mori, and A. Ushida, “On coupled oscilla-
tors networks —for the cellular neural network,” Proc. of
ISCAS 93, pp.2327-2330, May 1993.

L.O. Chua and L. Yang, “Cellular neural networks: the-
ory,” IEEE Trans. Circuits & Syst., vol.35, no.10, pp.1257—
1272, Oct. 1988.




