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Spatio-Temporal Chaos in 
Simple Coupled Chaotic Circuits 

Yoshifumi Nishio, Member, IEEE, and Akio Ushida, Membek, IEEE 

Abstract-In this paper, simple autonomous chaotic circuits 
coupled by resistors are investigated. By carrying out computer 
calculations and circuit experiments, irregular self-switching phe- 
nomenon of three spatial patterns characterized by the phase 
states of quasi-synchronization of chaos can be observed from 
only four simple chaotic circuits. This is the same phenomenon 
as chaotic wandering of spatial patterns observed very often from 
systems with a large number of degrees of freedom. Namely, one 
of spatial-temporal chaos observed from systems of large size can 
be also generated in the proposed system consisting of only four 
chaotic circuits. A six subcircuits case and a coupled chaotic cir- 
cuits networks are also studied, and such systems are confirmed 
to produce more complicated spatio-temporal phenomena. 

I. INTRODUCTION 

M ANY NONLINEAR dynamical systems in the various 
fields have been clarified to exhibit chaotic oscillations, 

and recently, applications of chaos to engineering systems 
attract many researchers’ attentions, for example, chaos noise 
generator, control of chaos, synchronization of chaos, and so 
on. Among the studies on such applications, synchronization 
of chaotic systems or signals is extremely interesting [l]-[3], 
because the chaotic solution is unstable, and small error of 
initial values must be expanded as’ time goes. As far as 
we know, such phenomena have been first reported to be 
generated in simple real circuits by a group of Saito [ 11. Since 
Pecora et al. have investigated such phenomena theoretically 
[2], many papers have been published until now. We have 
proposed coupled chaotic circuits generating various types of 
quasi-synchronizations [4]-[7]. 

On the other hand, a network of chaotic one-dimensional 
maps has been investigated earnestly by Kaneko [8]-[ll]. 
He has discovered various kinds of phenomena called spatio- 
temporal chaos such as diffusion and Brownian motion of 
defect, clustering, spatio-temporal intermittency, and so on. 
The study of such systems are very important not only as 
models for nonlinear systems with many degrees of freedom 
but also for the clarification of biological information process- 
ing [12] and for engineering applications. Actually, Aihara et 
al. have proposed chaotic neural networks whose cell is a one- 
dimensional chaotic map, and they have confirmed that such 
systems produce dynamical chaotic search for memorized pat- 
terns [13], [ 141. Recently, Chua and his colleagues published 
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their papers on spatio-temporal chaos observed in a chain of 
coupled Chua’s circuits, which are real physical continuous 
systems [15]-[17]. For the purpose of the clarification of 
various phenomena in natural fields, it is very important to 
investigate spatial-temporal phenomena observed from such 
real physical circuit models. 

In this paper, we investigate four simple autonomous chaotic 
circuits coupled by one resistor. This is a four subcircuits case 
of the circuit proposed in [7]. In [7], we briefly mentioned 
the generation of some phenomena discussed in this paper. By 
carrying out computer calculations and circuit experiments, 
irregular self-switching phenomenon of three spatial patterns 
characterized by the phase states of quasi-synchronization of 
chaos can be observed. The irregularity of the change of spatial 
patterns is investigated by using the Poincare map. This is the 
same phenomenon as chaotic wandering of spatial patterns 
observed very often from systems with a large number of 
degrees of freedom. Namely, one of spatial-temporal chaos 
observed from systems of large size can be also generated in 
the proposed system consisting of only four chaotic circuits. 
Usually, the ‘term “spatio-temporal chaos” is used for irregular 
dynamical phenomena observed from a large number of cou- 
pled chaotic systems that is spatially extensive. However, there 
are many spatial-temporal phenomena observed from both the 
large size and small size of coupled systems, for example, 
chaotic wandering of spatial patterns discussed in this paper, 
clustering of spatially arranged chaotic cells, and so on: In such 
cases, we consider that the basic mechanism of the generation 
of some spatial-temporal phenomena is almost the same in 
spite of the system size. Namely, the number of chaotic 
cells is not essential, and it seems to be better to analyze 
simple systems of small size first and to extend the study to 
systems of large size with reference to the results obtained 
from small size. If observed phenomena are almost the same, 
we had better not make distinctions between systems of large 
size and small size. Because the most important subject is 
clarification of observed phenomena. Hence, we use the term 
“spatio-temporal chaos” in this paper as irregular dynamical 
changes of spatial patterns observed from coupled chaotic 
systems arranged spatially. Please note we pay attention to 
the phenomena without restriction on the size of systems. We 
consider that the irregular self-switching phenomenon of three 
spatial patterns observed from the four chaotic circuits is one 
of the simplest spatio-temporal chaos (in the sense of above- 
mentioned definition) observed from continuous dynamical 
systems. 
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Fig. 1. Basic circuit model. 

(a) 

--$x1 

(b) 
Fig. 2. Typical example of chaotic attractors observed from the chaotic 
subcircuit. (a) Computer calculation for (Y = 24.0 and /3 = 0.295. (b) Circuit 
experiment for L1 = 204.15 mH, Lz = 9.933 mH, C = 0.03425 pF, and 
T = 630 R. Horizontal: 0.4 mA/div. Vertical: 1 V/div. 

We also study on the six subcircuits case as an extended 
example and confirm the generation of more complicated 
irregular self-switching phenomenon of spatial patterns. More- 
over, in order to show the possibility of the extension to 
systems of large size, we carry out computer simulation for 
a 3 x 3 network based on the coupled oscillators network 
[18] and confirm the generation of the chaotic wandering 
of many spatial patterns. This result also indicates that the 
self-switching phenomenon observed from only four chaotic 
circuits is the same as the chaotic wandering observed from 
systems of large size. 

II. BASIC CIRCUIT MODEL 

Basic circuit model is shown in Fig. 1. Please note that this 
is a four subcircuits case of the circuit proposed in [7]. In 
this system, four of the same chaotic circuits are coupled by 
one resistor R. When the coupling resistor R is equal to zero, 
all Li ‘s are grounded, and four subcircuits become completely 
independent. Each chaotic subcircuit is a symmetric version of 
the circuit model proposed by Inaba et al. [19]. It consists of 
three elements, one linear negative resistor, and one nonlinear 

resistor, which is realized by connecting some diodes, and 
is one of the simplest chaotic circuits. We have confirmed 
that this subcircuit exhibits the bifurcation phenomena that 
are similar to those reported in [20]. By using the same 
method in [20], we will be able to prove the generation of 
logistic chaos and two types of windows from the subcircuit. 
Fig. 2 shows a typical example of chaotic attractors obtained 
from the uncoupled chaotic subcircuit. In the following circuit 
experiments, the values of the inductors and the capacitor 
in each chaotic subcircuit are fixed, and those values are 
measured as Li = 204.15 mH f0.073%, Lz = 9.933 mH 
f0.030%, and C = 0.03425 &F *0.29%. 

At first, we approximate the i - w characteristics of the non- 
linear resistor consisting of diodes by the following function. 

By changing the variables and parameters, 

(where a =’ /z) (2) 

the circuit equation is normalized as 

N 

ik=ij(2k+1Jk)-Zk-~~xj 

j=l 

Ijk = a{p(xk + Yk) - zk - .f(!/k)} 

ik = %k + yk (k = 1,2,3,4) (3) 

where 

f(Yk) = i?hii. (4) 

Please note that when the coupling parameter y, which is 
proportioned to R, is equal to zero, the coupling term in (3) 
vanishes. 

For computer calculations, in order to consider the dif- 
ference of real circuit elements, (3) is rewritten using an 
additional parameter Aw as follows: 

$k = a{p(xk + ?Jk) - zk - f(!/k)} 

ik = (1 + (k - l)Aw}(xr, + yk) (lc = 1,2,3,4). (5) 

In the following computer calculations, we fix the parameter 
a! as 24.0 and (5) is calculated by using the Runge-Kutta 
method with step size At = 0.01. 
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(a) 

Fig. 3. In- and opposite-phases quasi-synchronization (4 subcircuits). (a) Computer calculation for p = 0.29,y = 0.40, and 
AU = 0.0. (b) Circuit experiment for T = 570 0 and R = 2.4 kR. Horizontal and Vertical: 0.4 mA/div. 

III. QUASI-SYNCHRONIZATION OF CHAOS 

Before we treat spatio-temporal chaos, we introduce two 
types of quasi-synchronizations of chaos in this section. We 
use the term quasi-synchronization only for qualitative expla- 
nation of the observed phenomena. The term means that phase 
shift between two chaotic signals is not completely constant 
but almost within some relatively small range. The generation 
of these quasi-synchronization phenomena have been already 
reported in [7]. Because these phenomena are deeply related 
with spatio-temporal chaos in the next section, we show some 
examples briefly. 

The first type is the in- and opposite-phases quasi- 
synchronization. Fig. 3 shows an example of the in- and 
opposite-phases quasi-synchronizations. In this case, each 
subcircuit exhibits chaos as Fig. 2. But, two of the four 
subcircuits are almost synchronized at the in-phase, and the 
rest is almost synchronized to the two subcircuits with n 
phase difference. Namely, phase difference with respect to 
the subcircuit 1 is described as (0, rr, 0, rr} for the example 
in Fig. 3. Though we omit other phase states in Fig. 3, there 
coexists more two different phase states, namely (0, O,r, X} 
and {0,~,~,0}. 

The second type is the two pairs of opposite-phases quasi- 
synchronization. Fig. 4 shows an example of the two pairs of 

opposite-phases quasi-synchronizations. In this case, subcir- 
cuits 1 and 2 are almost synchronized at the opposite-phase. 
Also, subcircuits 3 and 4 are almost synchronized at the 
opposite-phase. However, a pair of subcircuits l-2 and the 
other pair of 3-4 are independent. We had considered that there 
coexists more two different phase states, namely { l-3,2-4} 
and { l-4,2-3}. However the combination of the decoupling 
into two pairs is decided by the slight difference of real circuit 
elements, and other combination states cannot be observed. 
Namely, this quasi-synchronization is based on the asymmetry 
of the coupling and cannot be generated in the case of 
completely symmetric coupling as Aw = 0.0. We consider 
that this phenomenon is deeply related with the clustering 
[ll]. However, in this paper, this phenomenon is not treated 
as spatio-temporal chaos because the spatial pattern is always 
the same. 

IV. SPATIO-TEMPORAL CHAOS 

For a large region in parameter space, we observed complex 
chaotic motion. Namely, we observed that three phase states 
of the in- and opposite-phases quasi-synchronizations are 
switched automatically and randomly as shown in Fig. 5. 
The order of the appearance of three phase states is truly 
unpredictable. Further switching period is also chaotic, namely 
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Fig. 4. Two pairs of opposite-phases quasi-synchronization (4 subcircuits). (a) Computer calculation for p = 0.295, y  = 0.34, and 
Ati = 0.01. (b) Circuit experiment for T = 580 0 and R = 850 R. Horizontal and Vertical: 0.4 mA/div. 

Fig. 5. Spatio-temporal chaos: Self-switching of in- and opposite-phases Fig. 6. Spatio-temporal chaos: Self-switching of two pairs of oppo- 
quasi-synchronization (4 subcircuits). T = 630 R and R = 1.3 kR. 
Horizontal and Vertical: 1.0 mA/div. 

site-phases quasi-synchronization (4 subcircuits). T = 630 R and R = 96 Ci. 
Horizontal and Vertical: 1.0 mA/div. 

a state may be switched to the next state instantly, and a state of spatial patterns observed very often from systems with 
may be switched after about a few seconds. We also observed a large number of degrees of freedom. The unpredictability 
similar self-switching phenomenon of three phase states of the of chaotic wandering is caused by local chaotic motions. 
two pairs of opposite-phases quasi-synchronizations as shown Because we cannot predict low-dimensional chaotic motion, 
in Fig. 6. This is the same phenomenon as chaotic wandering the change caused by the chaotic motion of subcircuits is also 
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Fig. 7. Time series of Poincark map: Self-switching of in- and oppo- 
site-phases quasi-synchronization (4 subcircuits). /3 = 0.295, y  = 0.10, and 
Aw = 0.0. 

I 

50000 
--+ 72: iteration 

Fig. 8. Time series of Poincark map: Self-switching of two pairs of oppo- 
site-phases quasi-synchronization (4 subcircuits). /3 = 0.295, y  = 0.01, and 
Aw = 0.0. 

unpredictable. We treat this phenomenon as one of spatio- 
temporal chaos. Because three spatial patterns characterized by 
phase states of quasi-synchronization of chaos changes irregu- 
larly as time goes, and it is caused by the local chaotic motion 
of subcircuits arranged spatially. The physical mechanism of 
the generation of self-switching will be explained as follows. 
In the case that unstability of the chaotic solution from each 
subcircuit is very strong, the current flowing into the coupling 
resistor R will often take relatively large value. It influences 
the motion of the solution in other subcircuits via coupling 
resistor R and at the moment the quasi-synchronization state 
will be disturbed. The self-switching is considered to be 
generated when the disturbance happens to act to switch the 
phase states of two of the four subcircuits. 

In order to investigate this phenomenon, we define the 
Poincart section as z1 = 0 where dzl/dt > 0 and plot the 
values of zi (i = 1,2,3,4) on zi - n (n denotes the 
number of iterations of the Poincark map) plane when the 
solution hits the Poincark section. Fig. 7 shows the time 
series of ‘attractors corresponding to the self-switching of 
the in- and opposite-phases quasi-synchronizations obtained 
from computer simulations. For example, the phase state of 
(0, 7r, 7r,-0) appears in the shaded area. In the figure, we can 
confirm that three phase states appear chaotically. 

Fig. 8 shows the time series of attractors corresponding to 
the self-switching of the two pairs of opposite-phases quasi- 
synchronizations obtained from computer simulations. For 
example, the phase state of { l-4,2-3} appears in the shaded 

(a) 

- 7x iteration 

(b) 

-t n: iteration 

0 3ocoo 
-t n: iteration 

Cc) 

Fig. 9. Effect of the value of Aw (4 subcircuits). /3 = 0.295 and y = 0.10. 
(a) Au = 0.000 (same as Fig. 7). (b) Aw = 0.003. (c) Aw = 0.005. 

area. In the figure, we can confirm that three phase states 
appear chaotically. 

Fig. 9 shows the effect of Aw, namely asymmetry of the 
circuit. Though we have not investigated detailed statistical 
characteristics, we can see that both of the appearing frequen- 
cies for some pattern and switching speed are deeply related 
with the value of Aw. 

V. SIX SUBCIRCU~~S CASE 

In this section, we consider the six subcircuits case as an 
extended example. The coupling structure is the same as Fig. 1 
except that the six Ll’s from the six subcircuits are connected 
to the coupling resistor R located in the center. We can expect 
the, generation of more complicated irregular self-switching of 
phase states. 

Fig. 10 shows an example of the in- and opposite-phases 
quasi-synchronization. In the six subcircuits case, there 
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Fig. 10. In- and opposite-phases quasi-synchronization (6 subcircuits). p = 0.29, y  = 0.10, and Aw = 0.0. 

X( 

0 50000 
+ n: iteration 

Fig. 11. Time series of Poincare map: Self-switching of in- and oppo- 
site-phases quasi-synchronization (6 subcircuits). /3 = 0.294, y  = 0.07, and 
Aw = 0.0. 

coexists sC2 = 10 phase states. The phase state in the figure 
is described as’ (0, 0, 0, X, r, 7r). 

Moreover, the number of the phase states for the three pairs 
of opposite-phases quasi-synchronization will be 
6C2.4C2/3P3 = 15. Though this type of quasi-synchronization 
seems to be unstable, we can observe these phase states as 
switching patterns in spatio-temporal chaos. 

Fig. 11 shows the self-switching of the in- and opposite- 
phases quasi-syncmonizations obtained from computer simu- 
lations. We can see six different phase states in the figure. 

Fig. 12 shows the self-switching of the three pairs 
of opposite-phases quasi-synchronizations obtained from 
computer simulations. For example, the phase state of 
{I-3,2-4,5-6} appears in the shaded area. 

We consider that 2N subcircuits can exhibit spatio-temporal 
chaos as shown in this section. Because the number of phase 
states increases for large N, more complicated irregular self- 
switching will be observed. 

VI. COUPLED CHAOTIC CIRCUITS NETWORK 

In this section, we develop the simple coupled chaotic circuit 
in Fig. 1 to coupled chaotic circuits network. We have already 
proposed coupled oscillators network consisting of van der Pol 
oscillators coupled by resistors as in Fig. 13 [18] and have 
confirmed the generation of various phase states. Based on the 
study, we propose the chaotic circuits network with resistor 
coupling. 

At first, let us consider the number of frozen spatial 
patterns corresponding to the in- and opposite-phases quasi- 

, [Att: Xl-X6 I 

0 
-+ 71: iteratiE? 

Fig. 12. Time series of Poincare map: Self-switching of three pairs of 
opposite-phases quasi-synchronization (6 subcircuits). p = 0.295, y  = 0.01, 
and Aw = 0.0. 

synchronization. If the in- and opposite-phases quasi- 
synchronization is generated around four coupling resistors, 
the number of the spatial pattern is seven as follows: 

(6) 

where 0 or r means the phase difference with respect to 
subcircuit 1. The number of this type of spatial pattern for 
the size of Ni x Nz can be calculated as 2N1-1 + 2NZ-1 - 1 

synchronization or the two pairs of opposite-phases quasi- using the scaling technique. 
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Fig. 13. Coupled oscillators network. 

Fig. 14. Coupled chaotic circuits network. 

While if the two pairs of opposite-phases quasi- 
synchronization are generated around four coupling resistors, 
the number of the spatial pattern is’also seven as follows: 

where different characters represent independent phase, and 2 
means the opposite phase of A. 

We investigate the network with the size of 3 x 3 shown in 
Fig. 14. Though this size is the smallest, and wave phenomena 
cannot be seen, this small network can produce spatio-temporal 
chaos. 

Fig. 15 shows the self-switching of the spatial patterns rep- 
resented in (6) obtained from computer simulations where the 
position of subcircuits corresponding to ~1 N 2s is as follows: 

) 
appear in the shaded areas I and II, respectively. As we can see 
from Fig. 15, the change of spatial patterns observed from the 
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Fig. 15. Time series of Poincare map: Self-switching of seven spatial pat- 
terns in (6) (3 x  3 network). /3 = 0.30,~ = 0.10, and Aw = 0.0. 

*9 
0 I ‘II III lcoo0 

- n; iteration 

Fig. 16. Time series of Poincare map: Self-switching of seven spatial pat- 
terns in (7) (3 x  3 network). p = 0.298, y  = 0.10, and Aw = 0.0. 

chaotic network is more complicated compared with Figs. 7 
or 11. This may be caused by the transmission delay. Detailed 
investigation on the relation between the clear switching and 
transmission delay is one of our important future research. 

Fig. 16 shows the self-switching of ‘the spatial patterns 
represented in (7) obtained from computer simulations. For 
example, phase states of 

appear in the shaded areas I, II, and III, respectively. 
This network is easily extended to large size. We can expect 

that various complicated spatio-temporal chaos based on the 
result in this section will be generated in such large scale of 
networks. 

VII. CONCLUDING REMARKS 

In this paper, we have investigated simple autonomous 
chaotic circuits coupled by resistors. By carrying out computer 
calculations and circuit, experiments, irregular self-switching 
phenomenon of three spatial patterns characterized by the 
phase states of quasi-synchronization of chaos could be ob- 
served from only four simple chaotic circuits coupled by one 
resistor. We consider that this is one of the simplest spatio- 
temporal chaos observed from continuous dynamical systems. 
The six subcircuits case and the coupled chaotic circuits 
network were also studied, and such systems were confirmed 
to produce more complicated spatio-temporal phenomena. 

Our future research is the theoretical approach to spatio- 
temporal chaos including statistical .study. Extension to the 
large size of coupled chaotic network and the transmission 
delay of the change of spatial pattern in it will be also studied 
in the near future. 
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