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PAPER

On a Ring of Chaotic Circuits Coupled by Inductors

SUMMARY In this study, a ring of simple chaotic circuits
coupled by inductors is investigated. An extremely simple three-
dimensional autonomous circuit is considered as a chaotic sub-
circuit. By carrying out circuit experiments and computer cal-
culations for two, three or four subcircuits case, various syn-
chronization phenomena of chaos are confirmed to be stably
generated. For the three subcircuits case, two different synchro-
nization modes coexist, namely in-phase synchronization mode
and three-phase synchronization mode. By investigating Poincaré
map, we can see that two types of synchronizations bifurcate to
quasi-synchronized chaos via different bifurcation route, namely
in-phase synchronization undergoes period-doubling route while
three-phase synchronization undergoes torus breakdown. Fur-
ther, we investigate the effect of the values of coupling inductors
to bifurcation phenomena of two types of synchronizations.

key words: chaotic circuit, quasi-synchronization of chaos, cou-
pled oscillator, torus breakdown

1. Introduction

Coupled oscillators systems are good models to describe
various nonlinear phenomena in the field of natural sci-
ence and a number of excellent studies on mutual syn-
chronization of oscillators have been carried out ([1]—
[3] and therein). In Ref.[1], Suezaki and Mori inves-
tigated synchronization phenomena observed from two
van der Pol oscillators coupled by a capacitor or a re-
sistor and confirmed that for the case of capacitor cou-
pling two synchronization modes coexist, namely one
is in-phase synchronization and the other is anti-phase
synchronization. Later Endo and Mori investigated a
large number of van der Pol oscillators coupled as a
ring [ 3] and confirmed the coexistence of various modes
of synchronizations. Because inductor coupling causes
the change of oscillation frequencies of synchronization
modes and the coexistence of different modes of syn-
chronizations, the investigations on oscillators coupled
by inductors may contain a large number of unsolved
interesting problems.

On the other hand, many nonlinear dynamical sys-
tems in various fields have been clarified to exhibits
chaotic oscillations and recently applications of chaos
to engineering systems attract many researchers’ atten-
tions, for example, chaos noise generator [4]-[6], con-
trol of chaos[7]-[9], synchronization of chaos[10]-
[16], and so on. Among the studies on such appli-
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cations, synchronization of chaotic systems or signals
is extremely interesting, because the chaotic solution is
unstable and small error of initial values must be ex-
panded as time goes. As far as we know, such phe-
nomena have been firstly reported to be generated in
simple real circuits by a group of Saito[10]. Since Pec-
ora et al. have investigated such phenomena theoreti-
cally[11], many papers have been published until now.
Further, the technique of synchronization of chaos is
also applied to realize secure communication systems
using chaos[17],[18]. However, almost all studies on
synchronization of chaos treat only the case that chaotic
signals generated from two identical chaotic systems are
completely synchronized at the in-phase. Although se-
cure communication systems do not need another types
of synchronizations, the investigation of another types
of synchronizations of chaotic systems will open the way
to another applications of chaos. Moreover, investigat-
ing what kind of phenomena are observed from var-
ious coupled chaotic systems would contribute to de-
velop the study of nonlinear dynamical systems. As
far as we know, another types of synchronizations of
chaotic circuits have been firstly reported in Ref.[19].
In Ref.[19], we investigated two or three simple chaotic
circuits coupled by one resistor and confirmed the gener-
ation of anti-phase quasi-synchronization of chaos and
three-phase quasi-synchronization of chaos as well as
in-phase. However, as we stated above, coexistence of
different types of synchronizations cannot be observed
in the case of resistor coupling and we did not pay our
attentions on bifurcation route to chaos.

In this study, we investigate various synchroniza-
tion phenomena observed from a ring of simple chaotic
circuits coupled by inductors. We use the term of syn-
chronization for two or more signals having the relation
such as S1(t) — Se(t — 1) < e for a constant 7" and a
small e including S;(¢) — Sa2(¢) < &. Also the term
quasi-synchronization means ¢ is replaced by a rela-
tively large constant, which is of course smaller than
the average amplitude of each chaotic signal. We con-
sider a simple three-dimensional autonomous circuit as
a chaotic subcircuit. This circuit is proposed by Inaba
et al.[20] and one of the simplest autonomous chaotic
circuits. By carrying out circuit experiments and com-
puter calculations for two, three or four subcircuits case,
various quasi-synchronization phenomena of chaos are
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confirmed to be stably generated. Especially we con-
centrate on the three subcircuits case. In this case, two
different quasi-synchronization modes of chaos coexist,
namely in-phase quasi-synchronized chaos and three-
phase quasi-synchronized chaos. As far as we know
this is the first result on the coexistence of different syn-
chronization modes of chaos. We investigate bifurcation
route to quasi-synchronization of chaos on which there
have been very few discussions. By using Poincaré map,
it is confirmed that two types of synchronizations bifur-
cate to quasi-synchronized chaos via different bifurca-
tion route, namely in-phase synchronization undergoes
period-doubling route while three-phase synchroniza-
tion undergoes torus breakdown [21]-[23]. Further, we
investigate the effect of the values of coupling inductors
to bifurcation phenomena of the two types of synchro-
nizations.

2. Circuit Model

The circuit model is shown in Fig. 1. In our system N
same chaotic circuits are coupled by inductors as a ring.
We consider a simple three-dimensional autonomous
circuit in Fig.2 as a chaotic subcircuit. This circuit
is proposed by Inaba et al.[20] and is confirmed to ex-
hibit logistic chaos theoretically. This circuit consists of
only three memory elements, one linear negative resistor
and one diode and is one of the simplest autonomous
chaotic circuits.

Fig. 1  Circuit model.
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Fig. 2 Chaotic subcircuit.
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At first, we approximate the 7 — v characteristics of
the diode by the following two-segment piecewise linear
function.

I
’Ud([k) = { T“/'il k

The equation governing the circuit in Fig. 1 is described
as follows:

I. ZV/r
v 0

dv _ Ly, . )
Od—tk = gup —ix — I + L_é(2k~l — 21, +Zk+1)
diy,
2R —
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where ¢y = ix and 11 = i1. By changing the variables
and parameters,
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(2) is normalized as

T = BT — Yk — 2k + 6(Yn—1 — 20Uk + Yk+1)

Yp = Tg

Zp = a{z, — f(a)} 4
(k:17217N)

where yo = yn, yn1 = y1 and
2z <1
( B> /7) (5)

flzn) = { ?Zk (zx > 1/7)

For computer calculations, in order to consider the
difference of real circuit elements, (4) is rewritten as fol-
lows.

Ty = Bxp — Y — 2k + 6(Yr—1 — 20k + Yp11)
Yk = Tk
Zp = a(l+ Awg){zr — f(z)} (6)

Figure 3 shows a typical example of chaotic attrac-
tors obtained from the chaotic subcircuit. In the fol-
lowing circuit experiments, the values of the inductors
and the capacitor in each chaotic subcircuit are fixed
and those values are measured as L; = 66.7 mH =+ 0.2%,
Ly = 10.85mH £ 1.4% and C = 0.06804 uF + 0.1%.
Further, we use four diodes connected in series instead
of one diode in Fig.2 to make the v — ¢ characteristics
uniform. While in the following computer calculations,
the parameter values corresponding to the inductors, the
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capacitor and the diode are fixed as o = 6.00, v = 100.0
and Awy, = 0.005(k — 1) and (6) is calculated by using
the Runge-Kutta method with step size At = 0.001.

The circuit in Fig. 1 can be regarded as a chaotic
circuit version of the coupled van der Pol oscillators
in Ref.[3]. Hence, this coupled chaotic circuits are ex-
pected to generate various types of synchronization phe-
nomena.

Attractor: X1-Y1 2

(a)

Fig. 3 Typical example of chaotic attractors observed [rom
the chaotic subcircuit. (a) Computer calculation (o« = 6.0,
B8 = 0.27, v = 100.0). (b) Circuit experiment (L; = 66.7mH,
Lz = 10.7mH, C = 0.0680 uF, g = 467 uS). Horizontal: 2 V/div.
Vertical: 2 mA /div.
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Fig. 4  In-phase synchronization of two chaotic circuits (com-
puter calculation). § = 0.30. (a) 8 = 0.07. (b) 8 = 0.11.
(C) 8 = 0.16. (d) ﬁ = 0.22. (1) X1 VS. x2. (2) &1 VS. Y1.
(3) T2 V8. Y2.
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3. Two Subcircuits Case

In this section, we investigate the special case of N =2
briefly, namely only two chaotic subcircuits are coupled
by one inductor. For the case of van der Pol oscillators,
two coupled system has been confirmed to generate two
different synchronization modes, namely in-phase syn-
chronization mode and anti-phase one[1].

We found that both of in-phase and anti-phase syn-
chronization modes were stably excited in the coupled
chaotic circuits as well as the van der Pol oscillators
case. The two different synchronization modes coexist
and we can produce one of two modes by inputting
a certain initial conditions. Further, we found that
the two types of synchronizations bifurcate from one-
periodic to chaotic via different bifurcation routes as a
control parameter increases.

Computer calculated results are shown in Figs. 4
and 5. Please note that in-phase synchronizations in
Fig.4 and anti-phase synchronizations in Fig.5 coex-

Atenctor: X1-X2 Muractor: 211 Artrator: K22

. N N

® 0 D
_

N

® T 2

, | Lesctor: 11Xz Attrecior: K191 Alleator X242

N O TP

Attracloc: 21-52 Mirretor X Y1 Mieminr X247

Fig. 5
(computer calculation). § = 0.30. (a) 8 = 0.05. (b) 8 = 0.13.
() B =016. (d) 8 = 0.19. (e) 8 = 0.25. (1) 1 vs. 22.
(2) 3 vs. y1. (3) =2 vs. ya.

Anti-phase synchronization of two chaotic circuits
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Fig. 6  In-phase synchronization of two chaotic circuits (cir-

cuit experiment). Lo = 246 mH. (a) g = 339 uS. (b) g = 388 uS.

(c) g = 424uS. (d) ¢ = 461 uS. (1) Horizontal and Verti-

cal: 2 V/div. (2)(3) Horizontal: 2 V/div. Vertical: 2 mA /div.

ist. Figure 4 shows in-phase synchronization mode. We
can see that two circuits are synchronized at the in-phase
completely when the attractor is periodic with short pe-
riod. When the attractor is chaotic, two circuits are
not synchronized completely, but are almost synchro-
nized as shown in Fig.4(d). We call the situation as
quasi-synchronization of chaos. As a parameter 8 in-
creases, one-periodic attractor bifurcates to chaotic at-
tractor via period-doubling route keeping in-phase syn-
chronization. This is the same as the bifurcation route
of the uncoupled subcircuit. Moreover, the shape of
the attractors of in-phase synchronization is quite sim-
ilar to those observed from the uncoupled subcircuit.
While, Fig.5 shows anti-phase synchronization mode.
In this case two circuits 'are not synchronized com-
pletely even when the attractor is one-periodic. This
is because the subcircuit is not symmetric with respect
to the origin. Moreover, the anti-phase synchroniza-
tion undergoes complicated bifurcation route explained
as follows. One-periodic attractor with symmetry on
the ;7 — xzo plane in Fig.5(a) bifurcates to two one-
periodic attractors with asymmetry as Fig.5(b). Each
asymmetric attractor bifurcates to torus via Hopf bifur-
cation as Fig.5(c) and to chaos vis torus breakdown
as Fig. 5(d). Two asymmetric chaos collide each other

611

ey

Fig. 7  Anti-phase synchronization of two chaotic circuits (cir-
cuit experiment). Lo = 246 mH. (a) g = 164 uS. (b) g = 389 uS.
(c) g =439 8. (d) g = 461 uS. (e) g = 481 uS. (1) Horizontal and
Vertical: 2 V/div. (2)(3) Horizontal: 2 V/div. Vertical: 2mA /div.

and one chaotic attractor with symmetry is generated
via symmetry-recovering crisis as Fig. 5 (¢). Namely, the
anti-phase synchronization exhibits symmetry breaking
and recovering and torus via Hopf bifurcation. The
corresponding circuit experimental results are shown in
Figs.6 and 7. Both results agree well qualitatively.

4. Three Subcircuits Case

In this section, we consider the case of N = 3 in detail,
namely three chaotic subcircuits are coupled as a ring.
This section is the main part of the present paper.

We found that both of in-phase synchronization
and three-phase synchronization are stably generated.
Computer calculated results are shown in Figs. 8 and 9.
In the figures we omit attractors on the x; —1; plane for
i = 2,3, because the shape is almost same as the attrac-
tors on the z; — y; plane. As well as two subcircuits
case, in-phase synchronization in Fig. 8 is confirmed to
undergo period-doubling route to chaos. While three-
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Fig. 8 In-phase synchronization of three chaotic circuits (com-
puter calculation). § = 0.40. (a) 8 = 0.06. (b) 8 = 0.10.
() 8 =0.12. (d) B = 015 (&) 8 = 0.20. (f) 3 = 0.25.
(1) z1 vs. z2. (2) z1 vs. z3. (3) z1 vs. y1. (4) Time waveform for
B8 =0.25.

phase synchronization in Fig. 9 undergoes torus break-
down. The corresponding circuit experimental results
are shown in Figs. 10 and 11. Both results agree well
qualitatively. Although we show only the case that the
phases of the solution obtained from subcircuits are ar-
ranged as {z1,%2,23} in Figs.9 and 11, we also con-
firmed the generation of the other phase-state, that is
{-rl) L3, :EQ}- ‘

In order to investigate the bifurcation route in de-
tail, we consider the Poincaré map of each synchroniza-
tion mode. The Poincaré section is defined as z1 = 0
where dxy/dt < 0. The projections of the Poincaré
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Fig. 9  Three-phase synchronization of three chaotic circuits
(computer calculation). § = 0.40. (a) 8 = 0.04. (b) 8 = 0.102.
(¢) B = 0.117. (d) B8 = 0.123. (e) 8 = 0.15. (1) z1 vs. z2.
(2) zy vs. z3. (3) z1 vs. y1. (4) Time waveform for 8 = 0.15.

maps onto y; — yo plane of in-phase synchronization
and three-phase synchronization are shown in Figs. 12
and 13, respectively. From Fig.12 we can see that
one-periodic attractor (a) bifurcates to two-periodic (b),
four-periodic (c), eight-periodic (d), two-band chaos (e)
and one-band chaos (). This is well-known period
doubling route to chaos. As [ increase further, syn-
chronization becomes weak as (g)—(i). From Fig. 13
we can see the bifurcation route of three-phase synchro-
nization via torus breakdown. One-periodic attractor
(a) bifurcates torus (b) via Hopf bifurcation. As 3 in-
creases, torus grows as (c)(d). At 8 ~ 0.109, a periodic
state (e) appears and after that folded torus and periodic
state appear as (f)—(i). As @ increases further, Poincaré
map has thickness (j)—(1) and area-expanding chaos is
considered to be generated.

Moreover, we made one-parameter bifurcation dia-
gram of the Poincaré map as shown in Figs. 14 and 15.
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(b)

Fig. 10

613

(d)

(3) — 1

In-phase synchronization of three chaotic circuits (circuit experiment). Lo =

138 mH. (a) g = 295 uS. (b) g = 376 uS. (c) g = 402 uS. (d) g = 418 uS. (¢) g = 438 uS.
(f) ¢ = 457 uS. (1) Horizontal and Vertical: 2 V/div. (2) Horizontal: 2 V/div. Verti-
cal: 2mA/div. (3) Horizontal: 0.1 ms/div. Vertical: 5 V/div.

Figure 14 shows that in-phase synchronization exhibits
logistic chaos. We can also observe the generation of
six-periodic window around 8 = 0.15. It is clear that
the synchronization becomes weak for larger § value.
From the Fig. 15 we can confirm the bifurcation route
of three-phase synchronization, namely bifurcation of
the one-periodic solution to torus around # = 0.05, the
generation of periodic solution around 8 = 0.10 and the
generation of chaotic solution for 8 values more than
about 0.11. Further, for § > 0.17 three-phase synchro-
nization disappears and only in-phase synchronization
exists.

Next, we consider the effect of the value of the cou-
pling inductor. We carried out both of computer cal-
culations and circuit experiments for another values of
Ly or §. The results are summarized as follows. For
in-phase synchronization, when the coupling is smalli,
periodic solutions having some phase difference are gen-
erated. Typical example is shown in Fig. 16(a). In
this case, two-periodic in-phase synchronization is ob-
served, but only the solution of the subcircuit 3 have

phase difference corresponding basic one-period. As a
result, attractor on z; — z plane has the strange shape
as shown in Fig.16(a2). Because of the symmetry of
the coupling, three attractors for this type of in-phase
synchronization coexist. As (§ increases, each attractor
bifurcates to chaos. At last the three attractors collide
each other and one chaotic attractor appears as shown
in Fig. 16 (b). This chaotic attractor on z1—xz9 plane has
the shape as Figs.16 (al) and (a2) are overlapped. For
three-phase synchronization, we found an interesting
phenomenon. Namely, parameter region correspond-
ing the generation of three-phase synchronization shifts
according to the value of the coupling. Figure 17 shows
the one-parameter bifurcation diagram for three-phase
synchronization for different § values. We can see the
parameter region shift toward small as § becomes small.

5. Four Subcircuits Case

In this section, we consider the case of N = 4 briefly.
We found that in-phase synchronization and four-
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Fig. 11
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(4) ——> t

Three-phase synchronization of three chaotic circuits (circuit experiment). Ly =

138 mH. (a) g = 249 uS. (b) g = 295 uS. (c) g = 344 uS. (d) g = 356 uS. (e) g = 370 uS.

(1)(2) Horizontal and Vertical: 2V /div.

—

(a)

(d)

® () ¢ w75

Fig. 12 Poincaré map of the in-phase synchronization. Hor-
izontal: y;. Vertical y3. § = 0.40. (a) 8 = 0.06. (b) 8 = 0.10.
(©) 8 = 0.12.. (d) 8 = 0.13. (e) 8 = 0.15. (f) 8 = 0.18.
(2) B=0.20. (h) 8=0.22. (i) B=0.25.

phase synchronization were stably generated as well as
the case of three subcircuits and that these two types of
synchronizations bifurcate to chaos via period-doubling
route and torus-breakdown route, respectively.

Figure 18 shows in-phase synchronization. In the
figure we omit attractors on the x; — y; plane for ¢ =
2,3,4, because the shape is almost same as the attractor

(3) Horizontal: 2V/div. Vertical: 2 mA/div.
(4) Horizontal: 0.1 ms/div. Vertical: 5 V/div.

[4)] (k) o M to
Fig. 13 Poincaré map of the three-phase synchronization. Hor-
izontal: y;. Vertical y2. 6§ = 0.40. (a) 8 = 0.04. (b) 8 = 0.06.
(c) =009 (d) 8 =0102. (e) 8 = 0.109. (f) 8 = 0.1092.
(g #=0117. (h) 8 = 012. (i) 8 = 0.122. (j) 8 = 0.123.
(k) 8=0.14. (1) B = 0.15.

on the z; — 1y plafle shown in Fig. 18 (e). In this case,
x7 and x5 are almost synchronized as Fig. 18 (a), and z5
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Fig. 14  One-parameter bifurcation diagram of the Poincaré
map for the in-phase synchronization. § = 0.40.

ﬁ(&

0.0

Fig. 15  One-parameter bifurcation diagram of the Poincaré
map for the three-phase synchronization. § = 0.40.
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Fig. 16
(b) B = 0.15. (1) 1 VS. Za. (2) X1 VS. Z3. (3) Z1 VS. Y1.
(4) x2 vs. y2. (5) z3 vs. y3.

In-phase synchronization for § = 0.30. (a) 8 = 0.10.

and x4 are also almost synchronized as Fig. 18 (¢), but
there seems to be phase shift between these two pairs
as Fig. 18 (b). This is the situation similar to the case
in Fig.16. Figure 19 shows four-phase synchroniza-
tion. This synchronization mode cannot be seen in van
der Pol oscillators case[3]. In our circuit model asym-
metry of the subcircuit may plays an important role to
make the generation of four-phase synchronization pos-
sible. Figure 19 shows only the case that the phases
of subcircuits are arranged as {x1,z2,23,24}. How-
ever, the other phase-state can be also observed, that is
{z1,%4,3,22}. The corresponding circuit experimen-
tal results are shown in Figs.20 and 21. Both results
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Fig. 17  One-parameter bifurcation diagrams of the Poincaré
map for the three-phase synchronization. (a) § = 0.30. (b) § =
0.50.

Att: K1-X2 12 Att: XI-X3 12 Att: X3-X4 12
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X
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@ 7T (e)

Fig. 18  In-phase synchronization of four chaotic circuits (com-
puter calculation). B = 0.17 and § = 0.30. (a) z1 Vvs. z2.
(b) 1 vs. z3. (¢) z3 V8. z4. (d) Time waveform. (e) =1 vs. y1.
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Fig. 19 Four-phase synchronization of four chaotic circuits
(computer calculation). 8 = 0.20 and § = 0.30. (a) z1 Vvs. z2.
(b) z1 vs. z3. (c) =1 8. 4. (d) Time waveform. (e) 1 vs. y1.

agree well qualitatively. Especially, the phase shift in
the in-phase mode is very clear from Figs. 20 (a)—(c).
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—
(d) (e)
Fig. 20  In-phase synchronization of four chaotic circuits (cir-
cuit experiment). g = 385uS and Lo = 240 mH. (a)—(c) Hori-
zontal and Vertical: 2 V/div. (d) Horizontal: 0.1 ms/div. Verti-
cal: 5 V/div. (e) Horizontal: 2 V/div. Vertical: 2 mA /div.

—>U1

(b)

@ ©)

Fig. 21 Four-phase synchronization of four chaotic circuits
(circuit experiment). g =400 48 and Lo = 240 mH. (a)—(c) Hor-
izontal and Vertical: 2 V/div. (d) Horizontal: 0.1 ms/div. Verti-
cal: 5 V/div. (e) Horizontal: 2 V/div. Vertical: 2 mA /div.

6. Concluding Remarks

In this study, we investigated quasi-synchronization phe-
nomena observed from simple chaotic circuits coupled
by inductors as a ring. By carrying out circuit ex-
periments and computer calculations for two, three or
four subcircuits case, we confirmed that various quasi-
synchronization phenomena of chaos were stably ob-
served.

We would like to emphasize that there had been
very few discussions on the coexistence or bifurcation
route of synchronized chaos. Moreover all of interesting
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phenomena introduced in this paper have been observed
from real circuit model made up easily.

Though we omit to introduce some results for an-
other chaotic circuits in this paper, we have carried out
circuit experiments for some types of chaotic circuits
and have confirmed the generation of similar types of
quasi-synchronization of chaos. Hence, various inter-
esting quasi-synchronization phenomena introduced in
this paper are considered to be generated in various cou-
pled systems. Namely, quasi-synchronization phenom-
ena of chaos are not special phenomena observed from
only a few systems, but common phenomena as well as
simple chaos.

We must establish the method for theoretical anal-
ysis of the quasi-synchronizations of chaos. Now,
we can investigate the stability of completely syn-
chronized chaos by calculating Lyapunov exponents.
However, the method cannot be applied for quasi-
synchronizations at all. We hope that our study would
motivate the establishment of analyzing method for
quasi-synchronizations of chaos and that the phenom-
ena in this paper would be applied to various engineer-
ing systems. ‘

Acknowledgment

The authors would like to thank Prof. Shinsaku Mori
of Keio University and Assoc. Prof. Toshimichi Saito
of Hosei University, for their valuable comments and
encouragement.

References

[1] Suezaki, T. and Mori, S., “Mutual Synchronization of Two
Oscillators,” Trans. IECE, vol.48, no.9, pp.1551-1557, Sep.
1965.

[2] Kimura, H. and Mano, K.,“Some Properties of Mutually
Synchronized Oscillators Coupled by Resistances,” Trans.
IECE, vol.48, no.10, pp.1647-1656, Oct. 1965.

[3] Endo, T. and Mori, S., “Mode Analysis of a Ring of a
Large Number of Mutually Coupled van der Pol Oscilla-
tors,” IEEE Trams. Circuits Syst., vol.25, no.l, pp.7-18,
Jan. 1978.

[4] Oishi, S. and Inoue, H., “Pseudo-Random Number Gener-
ators and Chaos,” Trans of IECE, vol.E65, no.9, pp-534—
541, Sep. 1982.

(5] Kohda, T., “An Electronic Noise Generator with 1/f Spec-
trum,” Proc. of ISCAS’85, pp.859-862, 1985.

[6] Suzuki, K., Nishio, Y. and Mori, S., “Design of the Noise
Generator Using Chaotic Circuit,” Proc. of ECCTD’93,
pp.849—854, Sep. 1993.

[7] Ott, E., Grebogi, C. and Yorke, J.A., “Controlling Chaos,”
Phys. Rev. Lett., vol.64, pp.1196—1199, 1990.

[8] Chen, G. and Dong, X., “On Feedback Control of Chaotic
Continuous-Time Systems,” IEEE Trans. Circuits Syst. 1,
vol.40, no.9, pp.591-601, Sep. 1993.

[9] Ogorzalek, M.J., “Taming Chaos-Part II: Control,” IEEE
Trans. Circuits Syst. I, vol.40, no.10, pp.700-706, Oct.
1993. ‘

[10] Ohmori, Y., Nakagawa, M. and Saito, T., “Mutual Cou-
pling of Oscillators with Chaos and Period Doubling Bi-



NISHIO and USHIDA: RING OF CHAOTIC CIRCUITS

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

(22]

[23]

furcation,” Proc. of ISCAS'86, pp.61-64, 1986.

Pecora, L.M. and Carroll, T.L., “Synchronization in
Chaotic Systems,” Phys. Rev. Lett., vol.64, no.8, pp.821-
824, 1990.

Carroll, T.L. and Pecora, L.M., “Synchronizing Chaotic
Circuits,” IEEE Trans. Circuits Syst., vol.38, no.4, pp.453—
456, Apr. 1991.

Endo, T. and Chua, L.O., “Synchronizing Chaos from
Electronic Phase-Locked Loops,” Int. J. Bifurcation and
Chaos, vol.1, no.3, pp. 363-368, 1991.

Chua, L.O., Itoh, M., Kocarev, L. and Eckert, K., “Chaos
Synchronization in Chua’s Circuit,” J. Circuits, Systems,
and Computers, vol.3, no.l, pp.93—108, Mar. 1993.
Ogorzalek, M.J., “Taming Chaos-Part I: Synchronization,”
IEEE Trans. Circuits Syst. I, vol.40, 1no.10, pp.693—699,
Oct. 1993, ‘

Carroll, T.L. and Pecora, L.M., “Synchronizing Nonau-
tonomous Chaotic Circuits,” IEEE Trans. Circuits Syst.
11, vol.40, no.10, pp.646—650, Oct. 1993.

Cuomo, K.M., Oppenheim, A.V. and Strogatz, S.H., “Syn-
chronization of Lorenz-Based Chaotic Circuits with Appli-
cations to Communications,” IEEE Trans. Circuits Syst. 11,
vol.40, no.10, pp.626—633, Oct. 1993.

Dedieu, H., Kennedy, M.P. and Hasler, M., “Chaos Shift-
Keying: Modulation and Demodulation of a Chaotic
Carrier Using Self-Synchronizing Chua’s Circuits,” IEEE
Trans. Circuits Syst. II, vol.40, no.10, pp.634—642, Oct.
1993.

Nishio, Y. and Mori, S., “Synchronization in Mutu-
ally Coupled Chaotic Circuits,” IEICE Technical Report,
NLP92-100, 1993.

Inaba, N. and Mori, S., “Chaotic Phenomena in a Circuit
with a Diode due to the Change of the Oscillation Fre-
quency,” Trans. of IEICE, vol.ET1, no.9, pp.842-849, Sep.
1988.

Matsumoto, T., Chua, L.O. and Tokunaga, R., “Chaos

‘via Torus Breakdown,” IEEE Trans. Circuits Syst., vol.34,

no.3, pp.240-253, Mar. 1987.

Inaba, N. and Mori, S., “Chaos via Torus Breakdown in
a Piecewise-Linear Forced van der Pol Oscillator with a
Diode,” IEEE Trans. Circuits Syst., vol.38, no.4, pp.398—
409, Apr. 1991.

Inaba, N. and Mori, S., “Folded Torus in the Forced
Rayleigh Oscillator with a Diode Pair,” IEEE Trans. Cir-
cuits Syst. I, vol.39, no.5, pp.402—411, May 1992,

Yoshifumi Nishio received the B.E,,
M.E., and Ph.D. degrees in electrical engi-
neering from Keio University, Yokohama
Japan, in 1988, 1990, and 1993, respec-
tively. In 1993, he joined the Depart-
ment of Electrical and Electronic Engi-
neering at Tokushima University, Toku-
shima Japan, where he is currently an
Assistant Professor. His research inter-
ests are in chaos and synchronization phe-
nomena in nonlinear circuits. Dr. Nishio

is a member of the IEEE.

617

Akio Ushida received the B.E. and
M.E. degrees in electrical engineering
from Tokushima University in 1961 and
1966, respectively, and the Ph.D. degree
in electrical engineering from University
of Osaka Prefecture in 1974. He was an
associate professor from 1973 to 1980 at
Tokushima University. Since 1980 he has
been a Professor in the Department of
Electrical Engineering at the university.
From 1974 to 1975 he spent one year as
a visiting scholar at the Department of Electrical Engineering
and Computer Sciences at the University of California, Berke-
ley. His current research interests include numerical methods
and computer-aided analysis of nonlinear system. Dr. Ushida
is a member of the TEEE.



