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SUMMARY There have been many investigations of mutual
synchronization of oscillators. In this article, N oscillators with
the same natural frequencies mutually coupled by one resistor
are analyzed. In this system, various synchronization phenomena
can be observed because the system tends to minimize the current
through the coupling resistor. When the nonlinear characteris-
tics are third-power, we can observe N-phase oscillation, and this
system can take (IV — 1)! phase states. When the nonlinear char-
acteristics are fifth-power, we can observe (N — 1),(N — 2)---3
and 2-phase oscillations as well as N-phase oscillations and we
can get much more phase states from this system than that of
the system with third-power nonlinear characteristics. Because of
their coupling structure and huge number of steady states of the
system, our system would be a structural element of cellular neu-
ral networks. In this study, it is confirmed that our systems can
stably take huge number of phase states by theoretical analysis,
computer calculations and circuit experiments.

key words: coupled oscillators, N -phase oscillation, phase states,
coupling resistor

1. Introduction

There have been many investigations of the mutual syn-
chronization of oscillators ([1]-[6] and therein). Endo
et al. have analyzed a large number of coupled van der
Pol oscillators[1]-[3]. Kimura et al. have confirmed
that two oscillators coupled by one resistor are synchro-
nized at opposite phase[4] and that three oscillators
coupled by one resistor are synchronized at 3-phase[5].
Further, there have been several investigations of the
mutual synchronization of oscillators with fifth-power
nonlinear characteristics ([7]-[9]). Endo et al. investi-
gated the multimode oscillations in ladder oscillators
with fifth-power nonlinear characteristics[7]. Datar-
dina et al. investigated the multimode oscillations in
toe coupled oscillators{8]. Yoshinaga et al. reported
the synchronized quasi-periodic oscillations in a ring
of coupled oscillators with fifth-power nonlinear char-
acteristics [9].

In Ref.[6], we have reported the synchronization
phenomena in N van der Pol oscillators with the same
natural frequency mutually coupled by one resistor. In
the system various synchronization phenomena can be
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stably observed, because the system tends to minimize
the current through the coupling resistor. Especially, we
have confirmed that N-phase oscillations (N = 2 ~ 13)
can be stably excited when the nonlinearity is strong and
in this case there are (N — 1)! phase states. This means
that when N = 13, our system can take 479,001,600
steady states. In Ref. [6], it was confirmed by only com-
puter calculations and circuit experiments.

Further, we have investigated N oscillators with
fifth-power nonlinear characteristics coupled by one
resistor in Ref.[10]. Because such an oscillator ex-
hibits hard oscillation, we can keep oscillations arbi-
trary number of oscillations to be stationary. Therefore,
we can get n-phase oscillations (n = 2,3,---, N) when
N oscillators with fifth-power nonlinearity coupled. As
a result, the number of the phase states becomes larger
than that of the system with third-power nonlinear char-
acteristics. When N = 13, it is considered that we can
get 792,712,283 phase states. Because of the coupling
structure and extremely large number of phase states of
the system, the system would be structural element of
the cellular neural network[11] or may be used as an
extremely large memory.

In this article, we analyze these two systems and
confirm that the system with fifth-power nonlinear char-
acteristics can take larger phase states than that of the
system with third-power nonlinear characteristics by
computer calculations and circuit experiments.

This paper consists of five sections. Section 1 is the
introduction. In Sect. 2, we show the circuit model, and
give the circuit equation. In Sect.3, we show the syn-
chronization phenomena in oscillators with third-power
nonlinear characteristics. In Sect. 4, we analyze the syn-
chronization phenomena in oscillators with fifth-power
nonlinear characteristics theoretically, and confirm the
phenomena by both circuit experiment and computer
calculation. Section 5 is the Conclusion.

2. Circuit Model

The circuit model is shown in Fig. 1. The circuit equa-
tions are described as follows,

d’Uk

E = _Zk — 7:7‘(/0/6)
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Fig. 1  Circuit model.

diy, iy
L—= = v —R> i (1)

=1

(k = 1725"'7N)

where i..(vg) indicates v — 7 characteristics of nonlin-
ear resistor. In this system, it is approximated by the
following function.

—g10% + 9303 (91,93 > 0)
(third-power

nonlinear characteristics)
g1k — g3y + g5vp  (g1,93,95 > 0)
(fifth-power

nonlinear characteristics)

@)

Ty (Uk) =

When the nonlinear characteristics are third-power, by
changing the variables,

t=vLCrT,
393" 3Lgs™"

C L
a=R\/; E:gl\/; 3)

Equation (1) is normalized as

Yi k 3

N
Uk =Tk —a )y (4)
J=1

i

T

(k=12 N)

where & = dz/dr. In Eq.(4), « is the coupling factor
and ¢ is the strength of nonlinearity. When o, e < 1, the
oscillation of each oscillators can be regarded as almost
purely sinusoidal, and Eq. (4) can written as follows.

N
Tp+ 2z :E(l—mi)dbk—astj (5)

j=1

In this case, the term ae Zjvzl (z;—2/3) can be omitted
because it is much smaller than the other terms.

When the nonlinear characteristics are fifth-power,
in Eq.(1), by changing variables,

t=+vLCr,
oo = i Ty iy = 1) C o/ Iy
5g5 L\ 5g57"
C 395 [¢1 L
:R — = — R — jammd —
o] \/L,ﬂ gl‘/5gs’5 gn/c, (6)

Equation (1) is normalized as

Il

Tk

1 1
—Yr —€ <Ik - gﬂmi + gm15c>

N

U =Tk —a Yy (7
j=1

(k= 1,2,---,N)

where « is the coupling factor and £ is the strength of
nonlinearity. The amplitudes of oscillators depend on
B. When a,e < 1, Eq.(7) is written as follows.

N
ik—i-a:k:—e(l—ﬁxi—{—xi):&k—aZ:tj (8)

Jj=1

In this case, the term —ce Z;V:1 (zj —Bz3/3+a3/5) can
be omitted just as the case of the third-power nonlinear
characteristics.

3. Synchronization Phenomena in the System with
Third-Power Nonlinear Characteristics

3.1 Stability of N-Phase Oscillation

In Ref.[4], Kimura et al. have shown the opposite phase
oscillation can be seen in two oscillators coupled by one
resistor and in Ref. [5], they have shown 3-phase oscilla-
tion can be seen in 3 oscillators coupled by one resistor.
They have also analyzed these phenomena theoretically
by using averaging method. Moreover, we have reported
that N-phase oscillations can be stably excited in [NV os-
cillators coupled by one resistor in the case of strong
nonlinearity [6].

In such systems, to minimize the loss by coupling
resistor R, the current through R should be minimized.
So the sum of the output voltage v; ~ vy should be 0.
When N is a prime number, /N-phase oscillations are
stably excited. However, when N is not a prime num-
ber, we can consider that N-phase oscillation is not
excited, because N-phase oscillation does not need to
be excited. For example, if N = 4, we can see vy and
vy are synchronized at opposite phase and that vz and
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vy are synchronized at opposite phase while the phase
between v; and vz is independent.

We can analyze these phenomena by using aver-
aging method when the nonlinearity is weak (i.e. & is
small). In such cases, we can assume that the waveforms
are nearly sinusoidal and that

x = ay cos(T — Og).

When we assume that the amplitude a; and the phase
0, are varying slowly, a; and 6, can be described as
follows by using averaging method to Eq. (5),

N

G = —g (1 - iai) ag — %Zaj cos(fr —0;) (9)
=1

. (a4 N

b = 5r Zaj sin(6y, — ;) (10)

Jj=1

By equating Eqs. (9) and (10) to 0, we can obtain the

steady states of ay and 6.

In Refs.[4] and[5], it is theoretically confirmed
that the opposite phase and 3-phase oscillation is sta-
bly excited. When more than 4 oscillators are coupled,
we can analyze the phenomena by the same way. How-
ever, because the number of equations become larger,
we have to get the eigenvalue of Jacobian by numer-
ical calculation. By this way, we can confirm that N-
phase (N = 4,5, - ) oscillation cannot be stably excited
when the nonlinearity is weak. So we can see N-phase
(N =4,5,---) oscillation only when the nonlinearity is
strong as shown in Ref.[6].

3.2 Numerical Analysis and Circuit Experiments

To confirm the synchronization phenomena in the sys-
tem with third-power nonlinear characteristics, we show
the experimental and numerical results. On circuit ex-
periments, the nonlinear resistor is realized as shown in
Fig.2 (a) and v — 7 characteristics of the resistor when
r = 150 is shown in Fig.2 (b). Note that when r is
large, nonlinearity is not so strong.

For computer calculation using Runge-Kutta-Gill
method, in order to consider the difference between the
natural frequency of real oscillators, Eq. (4) is rewritten
as follows.

Ty = —Yp+ € Tk~ 3

N
Uk = (1+ Awg)xy — azyj
=1

an

(k=1,2,--,N)

where Awy corresponds to the difference between the
natural oscillating frequency of the reference oscillator
and those of another oscillator.

We have carried out circuit experiments for the case
of N =4 ~ 11. First, we show the results when N is a
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(a) Circuit model of the nonlinear resistor.
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(b) v — i characteristics of the nonlinear resistor (+ = 1502, horizontal scale:
200mV/div., vertical scale: 5mA/div.).
Fig.2  Realization of nonlinear resistor with third-power non-

linear characteristics.
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Fig. 3  5-phase oscillation obtained from circuit experiment
and computer calculation for the case of N = 5. (a) Experimen-
tal result (L = 10.0mH, C = 0.068 uF, R = 300Q, r = 1509,
horizontal scale: 100 us/div., vertical scale: 1.00 V/div.). (b) Nu-
merical result (o = 2.0, & = 5.0, max(Awg) = 0.004).

prime number. When the nonlinearity of each oscillator
is weak, N-phase oscillation cannot be excited. Figure 3
shows an example of 5-phase oscillation observed for
the case of N = 5 by circuit experiments and computer
calculation. Similarly, Figs.4 and 5 show examples for
the case of NV = 7,11 respectively. From these figures,
we can see that 7-phase and 11-phase oscillations are
stably excited.

Next, we show the results when N is not a prime
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Fig. 4  7-phase oscillation obtained from circuit experiment
and computer calculation for the case of N = 7. (a) Experimen-
tal result (L = 10.0mH, C = 0.068 uF, R = 3004, r = 15012,
horizontal scale: 100 us/div., vertical scale: 1.00 V/div). (b) Nu-
merical result (o = 2.0, £ = 6.0, max(Awy,) = 0.006).
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Fig. 5 ll-pha::) oscillation obtained from (z)ircuit experiment

and computer calculation for the case of N = 11. (a) Experimen-
tal result (L = 10.0mH, C = 0.068 uF, R = 5000, r = 1504,
horizontal scale: 100 ps/div., vertical scale: 1.00 V/div.). (b) Nu-
merical result (o = 1.5, £ = 7.0, max(Awy) = 0.001).

number. Figure 6 shows an example for the case of
N = 4. When N = 4, we cannot see 4-phase oscilla-
tion. In this figure, v; and vz are synchronized at the
almost opposite phase and vs and vy are synchronized
at the almost opposite phase. However, the phase differ-
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Fig. 6  Result of circuit experiment and computer calculation
for the case of N = 4. (a) Experimental result (L = 10.0mH, C =
0.068 uF, R = 3002, r = 1502, horizontal scale: 100 us/div.,
vertical scale: 1.00V/div.). (b) Numerical result (a = 2.0,
e = 6.5, max(Awy) = 0.003).

4 .oy 2 Lo B v 4 1w A—=0,00s
- - : =

v ]

]JJH‘:‘ '
. —““j

val N

m—,
Vs, /[x ‘ \“) ;‘Jﬁ
L 1

Vg 3\ / e

L S

W

vr

»/f; T

e b T
1)9’ 4 i f*q—"\

i

(a) (b)

i

Fig. 7  9-phase oscillation obtained from circuit experiment
and computer calculation for the case of N = 9. (a) Experimen-
tal result (L = 10.0mH, C = 0.068uF, R = 3000, r = 1508,
horizontal scale: 100 us/div., vertical scale: 1.00 V/div.). (b) Nu-
merical result (o = 2.0, & = 6.0, max(Awy) = 0.004).

ence between v; and vs is independent. The combina-
tion of the synchronized oscillators seem to be decided
by the difference between natural frequencies of real os-
cillators. Figure 7 shows an example for the case of
N =9. When N =9, we considered that we could not
see 9-phase oscillation. But from these results, we can
see 9-phase oscillation is stably excited by experimental
and numerical results.

To confirm the stability of these results, we inves-
tigate the stability of fixed points. To find the stability
of the fixed points, we calculate the eigenvalues of the
Jacobian of Poincaré map. In Table 1, we show the
maximum eigenvalues for some parameters of « and «.
When the absolute values of eigenvalues are less than 1,



248
Table 1  Eigenvalues of the Jacobian of the Poincaré map of
the system with third-power nonlinear characteristics.
(a) N =5.
(04
€ 1.0 2.0
5.0 | 0.9310294 | 0.7880829
3.0 | 0.8891462 | 0.8994127
1.0 | 0.9970051 | 0.9874986
(b) N=7.
(a7
€ 1.0 2.0
7.0 | 0.8445946 | 0.8253883
6.0 | 0.9646250 | 0.8567104
4.0 | 0.9025337 | 0.9251142
(c) N=9.
o
€ 1.0 2.0
6.0 | 0.9569461 | 0.9687292
5.0 | 0.9565380 | 0.9418810
(d) N =11.
<
€ 1.0 2.0
7.0 | 0.9790941 | 0.9950770
6.0 | 09621364 | 0.9686279

the fixed points are stable. From these tables, we can
confirm that N-phase oscillation can be stably excited
when o and e are large.

4. Synchronization Phenomena in the System with
Fifth-Power Nonlinear Characteristics

4.1 Theoretical Analysis

The oscillator with the fifth-power nonlinear character-

istics is normalized as following equation.
E+x=—e(l—pB2%+2"i (12)

Using averaging method, the amplitude a of z is de-
scribed as follows.

. £ 8, at
= {1-Fa2 1% 3
a 2( 4a+8)a (13)
Let A = a2,
i 8 A2
A= (172 il
s( 4A+ 3 A (14)

Considering the stability of this equation,

1. When A(0) >8—+/32 -8, A—3++/32-8
2. When A(0) < 8—+/3%2-8, A—0

So we can see whether the oscillation is excited or not
depends on its initial state. Using these characteristics,

IEICE TRANS. FUNDAMENTALS, VOL. E78—-A, NO. 2 FEBRUARY 1995

it is considered that we can keep arbitrary number of
oscillations to be stationary.
Using averaging method, Eq. (8) is described as

) € I} 1
ap — 5 {—1 + ZCL% — é—ai}ak

N
—%Zaj cos(fx — 6;) (15)
=1
0 XN
e = —— Zaj sin(6x — 6;) (16)
20/k =

By equating Eqs. (15) and (16) to 0, we can obtain the
steady states of a; and 8 by the same way in Refs.[4]
and[5].

When N = 2, we can take the following equations
from Eq. (16).

«as .
0, = ﬁsm(&l —0,) (17)
. oaq .
b = %glsm(% — 1) (18)
When we take
6, — 0 =10 (19)
010 - 920 = 00 (20)

where 019 and 029 are the steady states values of 8y and
f>. Therefore, we can get the conditions as follows,

sinfy = 0 21)
and
6=2 <@+ﬂ)sin9
2 ai as

The condition of stability of § when 8 = 6y is described

as
g [do o« fag al
[39 (E)]HO - (a_l * a_z> cosfo <0 (23)

From Egs. (21) and (23),

(22)

N |

cosfy = —1 (24)
So the steady states of the phase difference fy are
bo=2n+ 1) (n==1,4£2,--). (25)
Then we can see 21 and z2 synchronize at the opposite
phase.
Substituting this relation into Eq. (15),
€ Ié) 1
5 {—1 + ZCL%O — ga‘llo} alo
o
—§(a10 —ag) =0 (26)
€ b 1
5 {—1 + 2“30 - gago} 20
[0 .
+§(a10 — ag) = 0. (27)

From these equations,
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£ I
(a10 — ago) [5 {1 - Z(afo + a10a20 + a3g)
e+ alhaan +adody + onnady + o) |
+a] = 0.

So we can get the relation

G109 = agzo

From Eq.(15)

0,
for A(O — /3% —
a10 = Q20 = \/—‘
B+ /B
for A(0 — /B2 —

(28)

(29)

(30)

Therefore, we can see that 1 and zs synchronize at the

opposite phase or that both z; and zy are 0.
When N = 3, using averaging method,

. € o B8 1
i = 5{- (14 2) + fut — ot}

—% COS(91 — 02) — % COS(03 — 01)

. € o' 6 1
@ 5{—@+z)+z@‘§@ a2

. € o g 51
i =51~ (14 2) + Jedget s

61

I
w0
=
=]
—~
D
=
|
>
ro
~—
[
M[
wn
=
=]
—~
ey
W
!
D
=
~—

&

Gy = . sin{f; — 02) + 2—3 sin(f — 03)

Qa2 G2

0.3 ZTG; Sil’l(03 — 91) — % sin(92 — 03)

€2)

(32)

(33)
(34)
(35)

(36)

Equating Egs. (34)—(36) to 0, we can get the relations

described as below.

agop Sin(@lo — 920) = aso sin(930 — 910)
aio sin(010 — 920) = aso Sin(GQO — 930)

a0 sin(920 — 930) = a10 Sin(ego — 910)

Now we take

01 — 0y =019

f2 — 03 = a3
then,

931 = 93 — 01 = —(012 -+ 923).

And we take

010 — 20 = 9:12

020 — O30 = a3

O30 — 010 = 031

(37)
(38)
(39)
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From Egs. (37)—(39), we can get the relations between
the phases and the amplitude as follows because f12 +

023 + 03, = 0.
A 1 2
cosfyy = - (ﬂ—@—@ (40)
2 \ai0020 a2 410
. 1 2
cos by = —<a¢—@—a—3ﬁ (41)
2 \azoazo as0 G20
. 1 2
cos bz = ~(—a2—0——@—@ (42)
2 \aipaszo aGs0 a0
Substituting Eqs. (40)—(42) into Eq. (15), we get
1
< { 1+ ﬂa%O ~a‘110} ag =0 (43)
2 8
€ 8 1
5{ 1+4a§0 Sago}azo =0 (44)
1
< { 1+ 'Ba30 a40} asg = 0 (45)
2 8
If all the oscillators are excited,
@10 = Ag20 = G30- (46)
Substituting Eq. (46) into Egs. (40)—(42),
. A A i
COos 912 = CO8 923 = COoS 931 = —5 (47)

So the phase difference between each oscillator is con-
. 2
sidered igw.

Next, we have to confirm the stability of the phase
difference. From Eq. (46), Egs. (34)—(36) are described
as follows.

91 = %{Sin(ﬂl — 92) - Sin(93 - 91)} (48)
0y = %{Sil’l(@l — 03) —sin(f2 — 03)} (49)
by = %{sin(eg, —6;) —sin(ds — 05)} (50)

From Egs. (48)—(50),
b = %{2 sin f15 — sinfa3 + sin(fy2 + Oo3) }
= P(6:12,023) (51)
fg5 = %{2 sin fa3 — sin 013 + sin(f12 + Oa23) }
= Q(b12,023)

The stability condition of these differential equations is
given as

P 80
— (s =) >0
P (aelz + 8923> -
P P )
0015 0033
q= >0
0Q Q.
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Substituting Eq. (51) into Eq. (52),
p= ~% - 2{cos 13 + cos a3 + cos(f12 + 023)} > 0

cos f1 + cos a3 cos(f15 + a3) < 0 (53)
2
q= % - 3{cos f15 cos O3

+(cosB13 + cosba3) cos(fha + 623)} >0 (54)
CcOos 912 Ccos 923
+(cos 015 + cos Oa3) cos(f12 + 3) > 0

Under the condition Eq. (47), Egs. (53) and (54) are sat-
isfied.

Next, we consider the case that one oscillator isn’t
excited, for example, z3 = 0. In this case, from Eq. (40),

Ccos élg = % <-”a1—0 - @) (55)

azo0 aio

while cos 523 and cos é31 are infinity. Because the am-
plitude of z3 is 0, the phase differences of z; and z
from x5 are nonsense. So it is enough that we investi-
gate the phase difference only between x; and z,. The
amplitudes of z; and 3 have the following relation.

ajp = agg (56)
So Eq.(55) is written as
CcOS é12 = -1 (57)

Because this relation is the same as N = 2, it is consid-
ered that ©y and zo synchronize at the opposite phase.
It is easy to predict that the synchronization phenomena
like this can be seen when x5 or x3 is 0. Therefore, in
N = 3, we can see both the opposite and 3-phase oscil-
lations in the system with fifth-power nonlinear charac-
teristics and we can take that five phase states is stably
excited. Moreover, it is stable when z; = 9 = 23 = 0.
Therefore, when N = 3, the number of the steady states
of the system with fifth-power nonlinear characteristics
is 5.

When more than 4 oscillators are coupled, we can
analyzed the phenomena by the same way. However, in
such cases, N-phase oscillation cannot be excited by the
reason which indicated in Sect.3.1. With strong non-
linearity, we can predict that N-phase oscillation can
be stably excited when every oscillator is excited. If
n (n=1,2,---, N —2) oscillators are not excited, the
excited oscillators are not influenced by the stopped os-
cillators because the current through the coupling resis-
tor is 0, we complain that (N —n)-phase oscillation can
be excited. So we investigate the stability of the system
with strong nonlinearity in Sect.4.2. If all the patterns
are stable in larger NV, the number of the steady states
of the system with fifth-power nonlinear characteristics
Py is described as follows.

N .

n=2

Table 2 Comparison of the number of steady states.
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with third-power with fifth-power
N | nonlinear character | nonlinear character
2 1 2
3 2 6
4 3 18
5 24 70
6 15 280
13 479,001,600 792,712,284
15002 3V Zeners
o]
R;
100
10£0Q
(a) Circuit_model of t_he nonlinear resistor.
4 E.C»vi‘/u’. 2 ‘Elf:vf:ﬂ,(' RLN

B AN E P b

Hrdriabrra b s

e ke [ |--(ul~1-l:il

(b) v — i characteristics of the nounlinear resistor (R, = 1.0k(, horizontal
scale: 2.0V/div., vertical scale: 5.0mA/div.).

Fig. 8  Realization of nonlinear resistor with fifth-power non-
linear characteristics.

where p,, is the number of the steady states of the sys-
tem with third-power nonlinear characteristics. Obvi-
ously, we can get much more steady states from the sys-
tem with fifth-power nonlinear characteristics than that
of the system with third-power nonlinear characteris-
tics. In Table 2, we show comparison of the number of
steady states between the systems with third-power and
fifth-power nonlinear characteristics.

4.2 Numerical Analysis and Circuit Experiments

In this section, we show the experimental and numer-
ical results to confirm the synchronization phenomena
in oscillators coupled by one resister. In circuit experi-
ment, we use the circuit shown in Fig. 8 (a) as nonlinear
resistors. Figure 8 (b) shows v — ¢ characteristics of the
nonlinear resistor. Just as the case of third-power non-
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Fig. 9 Experimental and numerical results for the case of

N = 3. (a) Experimental result when 3 oscillators are excited
(L = 10.0mH, C = 0.068 uF, Ry, = 1.0kQ, R = 300, horizon-
tal scale: 50.0 us/div., vertical scale: 5.0V/div.) (b) Numerical
result when 3 oscillators are excited (o = 4.0, 8 = 4.4, ¢ = 0.2,
max(Awy) = 0.002). (c) Experimental result when 2 oscillators
are excited (L = 10.0mH, C = 0.068uF, Ry, = 1.0kQ), R =
3002, horizontal scale: 50.0pus/div., vertical scale: 5.0V/div.)
(d) Numerical result when 2 oscillators are excited (o = 4.0,
B =44, e=0.2, max(Awy) = 0.002).

linear characteristics, Eq.(7) is rewritten as follows for
computer calculation.

. 1 1
Tp = —yp—¢ <$k - gﬂx‘z + 39”2)

N
U = (14 Awg)zy — Zyj (59)

Jj=1

(k = 172)"'7N)

When N is larger than five and the nonlinearity is
weak, we cannot see N-phase oscillation as the case with
the third-power nonlinear characteristics by the reason
shown in Sect. 3.1. So we show the experimental and nu-
merical results when nonlinearity is strong. Figures 9
and 10 show the results for the case of N = 3,4, respec-
tively. From Fig. 9, we can see 3-phase oscillation when
3 oscillators are excited and also opposite phase oscil-
lation when one oscillator is stopped. Similarly, from
Fig. 10, we can see that v; and vy synchronize at the
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Fig. 10  Experimental and numerical results for the case of
N = 4. (a) Experimental result when 4 oscillators are excited
(L =10.0mH, C = 0.068 uF, Ry, = 1.0k, R = 3002, horizon-
tal scale: 50.0 us/div., vertical scale: 5.0V/div.). (b) Numerical
result when 4 oscillators are excited (o = 3.0, 8 = 4.5, £ = 0.5,
max(Awy) = 0.003). (c) Experimental result when 3 oscillators
are excited (L = 10.0mH, C = 0.068 uF, Ry, = 1.0k, R =
300€2, horizontal scale: 50.0 us/div., vertical scale: 5.0 V/div.).
(d) Numerical result when 3 oscillators are excited (o« = 3.0,
B = 4.5, e = 0.5, max{Awyg) = 0.003).

opposite phase and vz and vz synchronize at the oppo-
site phase but the phase difference between v; and vy is
independent. And we can also see both 3-phase (see
Figs.10(c) and (d)) and opposite phase oscillations.
Figure 11 shows the results for the case of N = 5. We
can see 5-phase oscillation because of strong nonlinear-
ity. We can see also the pairs of the opposite oscillation,
3-phase oscillation, (see Figs. 11 (c) and (d)) and the op-
posite oscillation. From these results, we can confirm
that we can take much more phase states than that of
the system with third-power nonlinear characteristics.
To confirm the stability of these results, we investi-
gate the stability of fixed points by calculating the eigen-
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Fig. 11  Experimental and numerical results for the case of
" N = 5. (a) Experimental result when 5 oscillators are excited
(L = 10.0mH, C = 0.068 uF, Ry, = 1.0kS§2, R = 3002, horizon-
tal scale: 50.0 us/div., vertical scale: 5.0V/div.). (b) Numerical
result when 5 oscillators are excited (o« = 4.0, 8 = 4.5, ¢ = 0.3,
max(Awg) = 0.004). (c) Experimental result when 3 oscillators
are excited (L = 10.0mH, C = 0.068 uF, Ry, = 1.0kQ2, R =
30052, horizontal scale: 50.0 us/div., vertical scale: 5.0V/div.).
(d) Numerical result when 3 oscillators are excited (o = 4.0,
B =4.5, £ =0.3, max(Awy) = 0.004).

values of the Jacobian of Poincaré map. In Table 3, we
show the maximum eigenvalues for the synchronization
patterns corresponding to the experimental and numeri-
cal results. When the absolute values of the eigenvalues
are less than 1, the fixed points are stable. From these
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Table 3  Eigenvalues of the Jacobian of Poincaré map of the
system with fifth-power nonlinear characteristics.
(A) N=3(a=4.0,8=44,e =0.2).
Number of oscillators
excited Eigenvalue
3 0.6619829
2 0.7385893
(b) N =4 (o =30,8=45,c = 0.5).
Number of oscillators
excited Eigenvalue
3 0.5277383
2 0.5814649
(b) N=5 (0 =4.0,8 =45, =0.3).
Number of oscillators ]
excited Eigenvalue
5 0.7250972
3 0.8298949
2 0.7720362

tables, we can confirm that not only N-phase oscilla-
tion but also N — 1, N — 2,--.,3,2-phase oscillations
can be stably excited when the nonlinear characteristics
are fifth-power. Therefore, we can get many phase states
as shown in Eq. (58).

5. Conclusion

In this study, we have investigated the synchronization
phenomena in oscillators coupled by one resistor with
both third and fifth power nonlinear characteristics.

In the system with third-power nonlinear charac-
teristics, we can ‘see /N-phase oscillation when N is
a prime number. In this case, we can get (N — 1)!
phase states from the system. Moreover, in the sys-
tem with fifth-power nonlinear characteristics, we can
see N, (N —1)---3 and 2-phase oscillations and can get
much more phase states than that of the system with
third-power nonlinear characteristics.

Because of the coupling structure and extremely
large number of steady states of the systems, they would
be utilized as a structural element of cellular neural net-
work or an extremely large memory.
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