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SUMMARY In this paper, four simple nonlinear circuits
with time-varying resistors are analyzed. These circuits consist of
only four elements; a inductor, a capacitor, a diode and a time-
varying resistor and are a kind of parametric excitation circuits
whose dissipation factors vary with time. In order to analyze
chaotic phenomena observed from these circuits a degeneration
technique is used, that is, diodes in the circuits are assumed to
operate as ideal switches. Thereby the Poincaré maps are derived
as one-dimensional maps and chaotic phenomena are well ex-
plained.  Moreover, validity of the analyzing method is
confirmed theoretically and experimentally.
key words: chaos, parametric excitation
dimensional map

circuit, one-

1. Introduction

Recently, studies on chaos are extensively carried
out in a number of areas of natural science. In the area
of electrical engineering, various chaos-generating cir-
cuits have been proposed and analyzed. Especially, in
three-dimensional autonomous circuits or in two-
dimensional nonautonomous circuits, the generation
mechanism of chaos is being cleared theoretically.(D®

On the other hand, parametric excitation circuits,
namely a circuit with a element whose value varies
with time, have studied in the area of nonlinear cir-
cuits. Especially, various nonlinear phenomena in
some circuits whose natural frequency factor varies
with time, have been investigated. In Refs. (3), (4),
such circuits have been confirmed to generate chaos
numerically. There are some systems whose dissipa-
tion factors vary with time, for example, under the
time-variation of the ambient temperature, a equation
describing a object moving in a space with some fric-
tion and a equation governing a circuit with a resistor
whose temperature coefficient is sensitive such as ther-
mistor. However, there are few discussions about
chaotic phenomena is such systems.

In this paper, simple nonlinear circuits with time-
varying resistors are analyzed. All these circuits con-
sist of only four elements; a inductor, a capacitor, a
diode and a time-varying resistor. These circuits are a
kind of parametric excitation circuits whose dissipa-
tion factors varies with time and chaotic attractors are
observed in three circuits. In order to analyze various
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chaotic phenomena in these circuits in detail, we use a
degeneration technique, that is, we consider the case
that the diodes in the circuits are assumed to operate as
ideal switches. In this case, the Poincaré maps can be
derived as one-dimensional maps and the generation of
chaos and quasi-periodic attractors is well explained.
This analyzing method have been proposed by Inaba et
al.® and have been confirmed to be extremely effective
to analyze some circuits including a diode.®*” How-
ever, this method have not been applied for parametric
excitation circuits. Lastly, the validity of the analyzing
method is confirmed theoretically and experimentally.

2. Circuit Model

In this paper we concentrate our attention on the
circuit family satisfying the following conditions.

1. The circuit consists of only. four elements; a in-
ductor, a capacitor, a diode, and a Time-Varying
Resistor (TVR).

2. The circuit is governed by a two-dimensional non-
linear differential equation with time-varying
coefficient.

3. Both of the diode and the TVR are connected in
parallel with a capacitor or in series with a in-
ductor.

The circuit family satisfying these conditions is
one of the simplest models in the nonlinear systems
whose dissipation factors vary with time. There are
four circuits satisfying the above conditions and they
are shown in Fig. 1. In the figures TVRs represent
Time-Varying Resistors. The resistance R;(#) or the
conductance G;(¢) of TVRs varies with time. In this
paper we consider the case that the function represent-
ing the variation of the TVRs is a square wave with
angular frequency ws and duty ratio p; as shown in
Fig.2. Because in this case circuit experiments are
extremely easy and we can analyze chaotic phenomena
rigorously by using the general solution of the circuit
equations. The advantages of the use of the general
solution are follows. At first, we do not have to carry
out numerical integrations on computer calculations.
Secondly, we can show the validity of the idealization
method of the diode theoretically. At last, we can
derive the concrete representation of one-dimensional
Poincaré maps obtained from the circuit models. The
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Fig. 1 Circuit model (TVR is a Time-Varying Resistor).

case of a sinusoidal wave will be explained later.

At first, we approximate the v—i characteristics of
the diodes in the circuits by the following two-segment
piecewise linear functions (sce Fig. 3).

o (V) = szi (vi— Vz"f‘|V‘i‘—“ Vz') (i=1,2)

Vdi(fi) = R2di<l'i+7;%—

i,-—};/;iD (i=3, 4).
(1)

Then the circuit equations are given as follows
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Fig. 3 Characteristics of the diodes.
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the normalized circuit equations are given as follows.

1. Circuit 1.
{-X:'l:yl'—Dl(xl) )
—nhi(o)
II. Circuit 2.
{ ——xzfz — Dy (x2) (8)
Ve=Xz
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Fig.4 f:;(r) corresponding to R;(z) and G;(¢).

II. Circuit 3.

Xz=— xsfs ( T) -
Y3=xXs— Dy (ys)
IV. Circuit 4.
{Jc.4=y4 (10)
Ya=—Xs— Yufa () — Dy (ps)

where f;(7) corresponds to the function switching the
TVRs and is shown in Fig.4. The function D;(+)
corresponds to the characteristics of the diodes and is
represented as follows.

Dy(x) = H(E=IExI) 2y g,

_<l+6_2|LE|> (i=3,4). (11)

&

9

D;(y:;) =

Define the following subspaces.
- HGes <1} (i=1,2)
.:{{(xz-, ylyi>ed (i=3,4),
G pdlxz1y G=1,2)
.:{{(xi, yly=e} (i=3,4).

Because Eqgs. (7)-(10) are piecewise linear and
f:(r) takes only two constant values, the general solu-
tions can be given as follows.

* In the region N;:

(12)

{’“(T)] F.(z)-F(0) ri(m]ﬂ’ (r) (13)
=Ir;\7) " r; ‘ Ni
:(7) v:(0) ‘
where
Fi(r)=[fci(r)}. (14)
yi(f)

In Eq.(14), f: (r) and f5:(z) are given as follows.
()77
oS wilT z’] e )_dﬁa(f)

sin w; (7)) r

fu(D) —ew"{

(i=1,4) (15)
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cos wi ()T

} L S0 =L )

Si(T) :em(r)r[

sin w: (7))t
(i=2,3) (16)

where

ou(e) ==L () =AU )
In Eq.(13), Pw:(7) is given as follows.

0
PNI(T):PNZ(T>:|: :|,
0

1 —1
Pys = N = .
(7) l:_fé(l'):| (7) [ 0 } (18)
» In the region M;:

z i O
[JC (r)]:Gz‘<T) ‘Gz"l(o) 'I:x ( )}*'Pm(r) (19)
yi(7) »:(0)
where
gxi(T)
Gi(l') :|: :| (20)
) gyi(f)
In Eq.(20), gx(r) and g,:(r) are given as follows.
[elr T dgxl(f) gxl(T)
g}d(r):_eh—('f)f_ ’ g_m(l'): dZ' + &
(21)
Azt T
0 (=] |+ (=210 @)
[efertnT \—dgss (D) | g (D)
gy3<r):tels—(‘r)1_ , Oxs(T)= dr + e
(23)
0 (=[G |+ o)=L (g
where
Aix (7)
~{efi(0) + 1}/ efi (1) + 1P —dede+ £(D))
2¢e;
B (i=1, 3)
—{efi(0) + 32/ {efi () + 1P —4dé?
2&;
(i=2, 4)

(25)
In Eq.(19), Py:(r) is given as follows.
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(b) (ag = 0.11, b; = 0.60, wy = 1.4, p, = 0.5, &; = 0.02)
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Fig.5 Chaotic attractors obtained from
(1) Circuit 1, (2) Circuit 2, (3) Circuit 3.
(a) Experimental results.
(b) Computer calculated results.
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The experimental and computer calculated results
are shown in Fig. 5. In the circuit experiments, the
TVR is realized by using an analog switch shown in
Fig. 6. We found chaotic attractors from the circuits 1
-3. In the circuit 4, we cannot found chaotic attractors
and for any parameter values the solution converges to
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(a) Current controlled type (for Circuit 1 and 4).

(b) Voltage controlled type (for Circuit 2 and 3).

Fig. 6 Circuit realization of the TVR.

the origin or diverges to infinity (the operational
amplifier saturates in the circuit experiments). This
reason will be explainéd as follows. Because the diode
in the circuit 4 is connected in series with the TVR, the
stability of the origin is decided by the sum of resis-
tance of the diode when it is off-state and resistance of
the TVR. Since the resistance of the diode when it is
off-stage is relatively large, the negative resistance of
the TVR is needed to be large value in order to
generate the oscillation, that is, Ryy<r_. However,
when the oscillation amplitude becomes larger and the
diode turns on, the solution diverges immediately
because the resistance of the diode when it is on-state
is relatively small.

3. Idealization of Diodes

The analysis of continuous chaos is routinely
done by the mapping method. In this case, the proof
of the generation of chaos is extremely difficult due to
insufficient mathematical discussions on the discrete
dynamical system of more than two-dimension. There-
fore, in the following, we analyze the circuits 1-3 by
using a degeneration technique, that is, we consider the
case that the diodes in the circuits are assumed to
operate as ideal switches. The analysis of the model
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Fig. 7 Chaotic attractors obtained from the circuit models with
the idealized diodes.
- (a) Circuit 1, (b) Circuit 2, (¢) Circuit 3.

with such a degeneration is much simpler than the
direct analysis of (7)-(9).
- First, let us provide the idealization of diodes.

1. The diode takes either ON-state or OFF-state.

2. The diode at ON-state operates as a constant voltage
source with voltage V; and the diode at OFF-state
operates as open.

3. The diode turns off when the current through it
becomes zero and turns on when the voltage across
it reaches V7.

4. The voltage across the capacitor and the. current
through the inductor is continuous.

This idealization corresponds to the limit ( Gy, Ry)—
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(o0, o) in Fig. 3.

In the case that the above idealization technique is
used, the circuit equations in the regions M; are
degenerated as follows.

I. Circuit 1.

{(xl: 1)

. 27

n=—1-nfi(r)

II. Circuit 2.
{(.xz: 1) (28)
»p=1

III. Circuit 3.
{Jes: —x3f3(7)
(y3=0)

The transitional conditions to the regions M; from N
; are given as follows.

(29)

I. Circuit 1.

1=0 (30)
II. Circuit 2.

Yot fo(7) =0 (31)
IlI. Circuit 3.

xs=1 (32)

Here Egs. (30), (31) represent that the currents
through the diodes become zero and Eq. (32) repre-
sents that the voltage across the diode reaches the
threshold voltage V. For instance, the currents
through the diode in the ON-state in the circuit 1 can
be obtained by letting dw /dt=0 in Eq.(2). Figure 7
shows examples of chaotic attractors obtained from the
models with the idealized diodes.

4. Validity of Idealization of Diodes

In this section, validity of the idealization of
diodes in the previous section is confirmed theoreti-
cally. Note that the derivation of the general solutions
enables us to show the validity of the idealization.

At first, define the following eigenspaces corre-
sponding the eigenvalues in Eq. (25).

Aix(0)—E; (1) (i=1, 2, 3) (33)

In the case of e,—0, the following equations are
satisfied.

13{2,1,._(7) =—00 (i=1,2,3). (34)
limE;. (7) ={(x;, y)|xi=1} (i=1, 2),
limEs; () ={(xs, ys)[15=0}. (35)

€30
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EE%{E” ()N (xa=D}={Ca, 1) |n=0},
lim{Ez (1) N (Ca=1)}={0x jo) 12+ /2 () =0},
yar_.l(l){EH(T) N (s=es)}={(xs, ys) |xs=1}. (36)

The proof of the above equations is provided in
the Appendix.

The meaning of the above equations is as follows.
For example, consider the solution entering the region
M. In M, the eigenspace Ei.(7) converges to x;=1
and A,- indicating the degree at which the solution is
constrained by Ey.(r) is —oo. Hence, this solution is
constrained to the boundary surface x;=1. Moreover,
consider the case where this constrained solution is
returned to N;. Since the solution is constrained to
E,.(7), it enters N; from the intersection of Ei; () and
x1=1. This intersection converges to y;=0, that is, the
transitional condition of the idealized model (Eq.
(30)). Therefore, the vector fields of the original
differential equations (7)-(9) converge to the ideal-
ized model (27)-(32) and the motion of the solutions
of our circuit models seems to be explained by the
models with the idealized diodes.

5. Poincaré Map

In the case that the idealization method in the
Sect. 3 is used, the circuit equations are degenerated
piecewisely and one-dimensional Poincaré maps can
be derived strictly.

At first, we explain the derivation of the Poincaré
map corresponding to the circuit 1.

In the circuit 1, when the solution enters the
region N from M, namely when the diode turns off,
(x1, y1) =(1, 0) is satisfied. Hence, only the phase of
the square wave switching the TVR decides the follow-
ing motion of the solution.

We consider the solution starting from the point
(x1, ;1) = (1, 0) at r=0. Let the phase of the function
switching the TVR be ¢, (n) (see Fig. 8). The solution
hits the boundary x;=1 at some proper time 7= 114
and enters the region M, from a point (x, 1) = (1, 3).
This solution moves on the line x;=1 and reaches (x
1, 1) =(1, 0) at some proper time r=rti1,+ 71, under
adequate parameter set.

The value of ¢, (n+1); the phase of the function

y1 ~
/ : //_\ 5 S wnr
N D
“ -, : i
— -
#1(n) $1(n+1)

Fig. 8 Derivation of the Poincaré map.
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Fig.9 Poincaré map 7; (circuit 1).
(@=0.11, b,=0.6, p=0.5).
(a) w1=2.0.
(b) U)1=3.0.

switching the TVR when the solution returns back to
the point (1, 0), is given as follows.

$1(n+1) ={¢1(n) + w:(r1a+ 1) Jmod 27 (37)

Tiq 18 given by calculating the following implicit equa-
tion

1
1=[1 0]-F(n.)-F(0) '[0} (38)

j1 1s given as follows
1
71=[0 1]-F (7o) - F*(0) -[0} (39)

715 is given by calculating the following implicit equa-
tion

{j;l_i_ﬁ(lo) }eﬁf‘(nb)nb_ﬁ(;b) =0 (40)

Then the Poincaré map 77 can be derived as
one-dimensional map which transforms the »n-th phase
¢1(n) into the (n+1)-th phase ¢;(n+1). Figure 9
shows two examples of 77 obtained by calculating (37)
-(40). We confirmed that T has the following feature
by computer calculations. T3 has discontinuity for w;
<wip=1. T is noninvertible for wip< w1 <wic=2.9.
T is homeomorphic for wic<wi. For wip<w; the
form of 7} is similar to the sine-circle map.®»® The
sine-circle map has been studied extensively and has
been confirmed to generate chaotic and quasi-periodic
attractors. Various chaotic phenomena observed from
the circuit 1 are well explained by the sine-circle map.
Namely, chaotic attractors can be generated for w;p<
w1< w1c and quasi-periodic and periodic states appear
and disappear alternately for wic<w;. The I-
parameter bifurcation diagram of T; is shown in Fig.
10.

Next, in the circuit 2, the solution in the region M,
must go through the point (x, y) =(1, —a;). Hence,
when the solution is on the point (1, —a), only the
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Fig. 10 1-parameter bifurcation diagram of T (circuit 1).
(@=0.11, 5,=0.6, p;=0.5).

27

— ¢o(n+1)

27
— $2(n)
Fig. 11 Poincaré map T, (circuit 2).

(@=0.10, B=1.35, w,=1.2, p,=0.5).

1 2 4 5

Wy

Fig. 12 1-parameter bifurcation diagram of Ty (circuit 2).
(a:=0.10, b,=1.35, p,=0.5)

phase of the square wave decides the following motion
of the solution. Therefore, the Poincaré map 7> can be
derived as one-dimensional map as similar to the case
of the circuit 1. Figure 11 shows an example of 7.
The derivative of T, has a discontinuity because there
are two routes from the point (1, —az) to the same
point. Due to the existence of this discontinuity, the
bifurcation phenomena are relatively complicated.
The 1-parameter bifurcation diagram of 7; is shown in
Fig. 12.

At last, in the circuit 3, when the solution enters
the region N; from M;, namely when the diode turns



474

T 27
— ¢3(n)
Fig. 13 Poincaré map T» (circuit 3).
(@=0.01, 5=0.35, ws=0.7, ps=0.5)

— w3

Fig. 14 l-parameter bifurcation diagram of T3 (circuit 3).
(a3=0.01, b3=0.35, p3=0.5)

f,(7)
/N

Fig. 15 Characteristics of the TVR varying sinusoidally.
on, (xs, y3) = (1, 0) is satisfied. Hence, only the phase
of the square wave decides the following motion of the
solution. In this case, ¢3 must be larger than 2psr.
Because when x3 hits the transitional condition x;=1,
f2(r) must be negative (see Eq. (29)). The Poincaré
map T3 can be derived as one-dimensional map as
similar to the case of the circuit 1. Figure 13 shows an
example of T3. The form of T; is similar to 7; and
chaotic and quasi-periodic attractors observed from the
circuit 3 are well explained by the sine-circle map. The
1-parameter bifurcation diagram of T; is shown in Fig.
14.

Lastly, consider the case that the TVR varies
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-4 1] 2
—x;
Fig. 16 Chaotic attractor obtained from the model with the
TVR varying sinusoidally.
(as=0.48, bs=0.245, ws=1.4, £5=0.02)

sinusoidally as shown in Fig. 15. Figure 16 shows an
example of the chaotic attractors observed from the
circuit 1. The parameters as, bs are selected as the area
contained by the sine wave and r-axis is the same as
the area contained by the square wave and r-axis. We
can confirm that similar attractors can be observed for
some parameter values.

6. Conclusions

In this paper, we have analyzed four simple cir-
cuits with time-varying resistors. By using a degenera-
tion technique we derived the one-dimensional Poin-
caré maps and confirmed that three circuits model
generate various chaotic phenomena. Moreover, we
carried out circuit experiments and confirmed the
validity of the analyzing results.

Our future research is to calculate the Lyapunov
exponents and to investigate the detailed bifurcation
phenomena.

Acknowledgment

The authors would like to thank Assoc. Prof.
Toshimichi Saito of Hosei University and Assist. Prof.
Naohiko Inaba of Utsunomiya University for their
valuable discussions.

References

(1) Chua, L. O, Komuro, M. and Matsumoto, T., “The
Double Scroll Family,” IEEE Trans. Circuits Syst., vol.
CAS-33, no. 11, pp. 1072-1118, 1986.

(2) Endo, T. and Chua, L. O., “Bifurcation Diagrams and
Fractal Basin Boundaries of Phase-Locked Loop Cir-
cuits,” IEEE Trans. Circuits Syst., vol. CAS-37, no. 4,
pp- 534-540, 1990.

(3) Inoue, M., “A Method of Analysis for the Bifurcation of
the Almost Periodic Oscillation and the Generation of
Chaos in a Parametric Excitation Circuit,” Trans. IEICE
Japan, vol. 168-A, no. 7, pp. 621-626, Jul. 1985.

(4) Tomiyasu, R., Kitagawa, T. and Itoh, M., “Chaotic
Solutions in the Duffing-Mathieu’s Equation,” Trans.
IEICE Japan, vol.J71-A, no.6, pp.1337-1338, Jun.



NISHIO and MORI: CHAOTIC PHENOMENA IN NONLINEAR CIRCUITS WITH TIME-VARYING RESISTORS

1988.

(5) Inaba, N., Saito, T. and Mori, S., “Chaotic Phenomena in
a Circuit with a Negative Resistance and an Ideal Switch
of Diodes,” Trans. IEICE, vol. E70, no. 8, pp. 744-754,
1987.

(6) Saito, T., “On a Chaotic Family Including One Diode,”
Trans. IEICE Japan, vol.J71-A, no. 6, pp. 1275-1281,
1988.

(7) Inaba, N. and Mori, S., “Chaos via Torus Breakdown in
a Piecewise-Linear Forced van der Pol Oscillator with a
Diode,” IEEE Trans. Circuits Syst., vol. CAS-38, no. 4,
pp. 398-409, 1991.

(8) Outlund, S, Rand, D., Sethana, J. and Siggia, E., “Univer-
sal Properties of Transition from Quasi-Periodicity to
Chaos in Dissipative Systems,” Physica 8D, pp. 303-342,
1983.

(9) Kaneko, K., “Supercritical Behavior of Disordered Orbits
of a Circle Map,” Prog. Theor. Phys., vol. 72, pp. 1089~
1103, 1984.

Appendix: Proof of Eq. (34)-(36)

At first, define the following functions of ;. Note
that the time function f;(r) can be regarded as a
constant, because f;(r) takes only two constant values.

i (ed) =—{efi(0) +1}
+{efi(r) +1P—4dede+f: (1))
(i=1, 3)
7724;(62) :_{Ezﬁ(f) + 1}i«/{62fé(2") + 1}2—4&‘%
(A-1)

These functions correspond to the numerator of
Eq. (25).

i (e:) and 724 (&) can be expanded to Maclaur-
in series and are approximated by its lower terms as

Giv (&) =—2&:fi (1) —2&3—2e¥i (1) + O (&%)
(i=1, 3)
Gi-(ed) =—2+2&8+26¥fi (v) + O (&)
N2+ (&2) = —265+2e8f 2 (1) + O (&)
N2-(€2) =—2~2&fs(1) +265—2€3f2(r) + O (&b)
(A-2)

By substituting (A+2) to (25), A:x(r) is represent-
ed as follows.

/1i+(l"):—f;'(2') —Ei_E%fi(T) +0(5?)

(i=1, 3)

(i=1, 3)
Mol =t et (D +0(e)  (i=1,3)
Jer () =— ex+ &3 2(2) + O (&)

Do (2) = == fi(2) + es—&f o(2) + O (&)

(A-3)
From Eq.(A-3), Eq.(34) is proved.
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The eigenspaces E;. (r) (i=1, 2, 3) are represented
as follows.

Bie(2): 51— 8t (0 (0 4 £ (0}

A ICET A
Ey (7): X2— Aai (7) (yz—eiz)zo

Ey . (7): {/13+(T) +ﬁ(f)}x3+y3=0 (A-4)

By substituting (A-3) into (A-4), (35) is proved
easily.

At last, Eq.(36) can be proved by using Egs.(A-3)
and (A-4).
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