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SUMMARY In this paper we propose a new secret key
cryptosystem using a chaotic map. This system is based on the
characteristics of chaos that the small variations of parameters
make the results of recursive calculations on chaotic maps quite
different. By appropriately setting the calculation times and
selecting a parameter as a secret key, we can make a useful
cryptosystem whose distribution of ciphertexts is uniform distri-
bution U(0,1) and the results of the computation for two slight
different keys are relatively independent.

1. Introduction

Random oscillations of the solutions in determinis-
tic systems, which are described by differential or
difference equations, are called chaos'’. Recently many
types of chaos-generating systems have been proposed
and analyzed in various fields. Especially, chaotic behav-
ior of solutions in some types of one-dimensional
difference equations

Xn+1:F<Xn)

is investigated in detail®. One-dimensional discrete
maps F generating chaotic solutions are called chaotic
maps.

Chaotic solutions have the following features.

1. If a parameter (the shape of F) varies slightly, the
solution obtained by recursive computation of chaotic
map from the same initial point, eventually becomes
quite different.

2. If an initial point X, varies slightly, the solution
obtained by recursive computation of chaotic map with
the same parameter, eventually becomes quite different.
3. Solution starting from almost all Xo in [0, 1] wan-
ders in [0, 1] at random and its distribution is uniform.
Therefore, if one doesn’t know both the exact parame-
ter and the exact initial point, he cannot expect the
motion of the chaotic solution.

In this paper, we propose a secret key cryptosystem
using a one-dimensional map F generating chaos. This
system is based on recursive calculations on a chaotic
map as X»=F"(Xo). We use a parameter « of the map
for a secret key, and a point p in an interval [0, 1] for
plaintext. The encryption function is #-times composite

X.<€J0,1] (1)
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of F! and the decryption function is #-times composite
of F. Therefore, the encryption and the decryption are
achieved by only repeating a very simple calculation.

Generally, F is m to one map, so one plaintext has
m" ciphertexts and any one of m" ciphertexts can be
deciphered only using the secret key. Therefore, senders
can selects the ciphertexts by any arbitrary random
generator.

Moreover, if times of composite is large enough, it
is expected that ciphertext variations act at random and
are independent of key variations. This is suitable for
the performance of the cryptosystem.

The security of our cryptosystem is relies on these
two points mentioned above.

Though the study on chaos have been continued for
about a quarter of a century, the effective application of
chaos for engineering has hardly proposed without
generating pseudo random sequences®. Therefore, our
study seems to be significant in points of the positive
application of chaos for engineering.

2. Construction of a Secret Key Cryptosystem Using
the Tent Map

As an example of chaotic maps, we use the tent map
which is one of the most popular and the simplest
chaotic maps.

2.1 Preliminaries

Figures 1(a) and 1(b) show the tent map and the
inverse tent map. These maps transform an interval [0,
1] into itself and contain only one parameter @, which
presents the location of the top of the tent. These maps
are described as follows.

Xin=2k  (02X=0)
F: i1 (2)-
Xi1= a—1 (a< Xr=1).
Xh—lza'Xk
F': or (3)

Xk_1=(a—1)Xk+1.

F is two to one map and F~' is one to two map.
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Therefore, F* is 2" to one map and F~" is one to 2" map.
Since X=F(F (X)) is always satisfied, X =
F*"(F7(X)) is always satisfied.

The distribution of the sequences obtained by iterat-
ing the tent map is uniform distribution /{0, 1)®.

2.2 The Cryptosystem

(1) Secret Key

The parameter « is a secret key.
(2) Encryption
(i) Set an initial point as a plaintext p, where 0< p<
1, p=*a.
(ii) Calculate #-times composite of the inverse map,
C=F"(p), in a recursive way, and send this value C to
the receiver. On each computation, select one of two
equations of F~' in Eq. (3) in any arbitrary way. In
short, one plaintext has 2” ciphertexts and one of 2*
ciphertexts is sent to the receiver.
(3) Decryption

Calculate »-times composite of the map, F*(C), in
a recursive way and recover the plaintext p.

X1
0 a 1
Xy
(a)
1
Ky
O
0 ) 1
X
(b)
Fig. 1 (a) Tent map.

(b) Inverse tent map.

p=F"(C)=F"(F"(p)). (4)

Note that only « is required for this computation. The
information about which of two equations is used for
each encryption process (F'™!), is not necessary for the
decryption process. Any one of 2" ciphertexts, even
when the coin-flipping is used in the encryption process,
is deciphered whithout fail.

The encryption and the decryption are achieved by
repeating a simple calculation. They require % times
multiplications.

3. Discussions
3.1 Requirements for Parameters

(1) Secret Key and Plaintext Size

Figures 2(a) and 2(b) show the distribution of the
ciphertexts for different parameters. When « is near 0,
the distribution of ciphertexts is narrow as in figure 2
(a) and eavesdroppers have larger probability of the
achievement for attacking the key. Similarly, ¢ must
not be near 1. However when « is around 0.5 as in figure
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Fig. 2 The histogram of F™°(X,) in 20 intervals
(z/20, (74+1)/20), =0, -, 19.
(a) a=011X,=0.2356
(b) @=046X,=0.2356
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Fig. 3 The histogram of plaintexts obtained from the same
ciphertext for 1,000 keys (C=0.3987) : 20 intervals (7/20,
(z+1)/20), =0, -+, 19.

2(b), the distribution of the ciphertexts is uniform
enough. Therefore, we assume that @ should be in 0.4<
a<0.6.

The key space size and the plaintext size are
required 64 bits for the defense against brute force
attack. If the significant digit is 20, both of the key space
size and the plaintext size are about 64 bits.

(2) Times of Mapping : »n

We determine # so.as to make the plaintexts
obtained by deciphering the same ciphertext using slight
different keys a and a+ 4a, quite different. That is, we
determine # so as to satisfy the following two condi-
tions.

(1) If one chooses some keys and computes plaintexts
by deciphering a ciphertext, the distribution of the
plaintexts for respective keys is uniform distribution
U(0, 1).

(ii) If one changes the keys chosen in (i) slightly,
the distribution is independent of the distribution in
(i).

If these two conditions are satisfied, attackers cannot
even expect the plaintext, as far as they do not know the
accurate key.

Figure 3 shows the distribution of plaintexts
obtained from a ciphertext for 1,000 keys, where #=75.
It is shown that the distribution is consistent with uni-
form distribution U(0, 1). Therefore, condition (i) is
satisfied.

In order to test the condition (ii), we use x* test.
The concept of the methods is as follows. Further details
about the test of independence are in Ref. (4 ).

(i) Divide the interval [0, 1] into / class intervals.
(ii) Compute the N pairs of F¥(C) and F#+4.(C), and
make /X [ contingency table (frequency=£%;,).

(iii) Compute
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Fig. 5 The rate of correct decryption
(Computer simulation : 1,000 samples).

If this value is smaller than the upper 5 % point of
%% of which the number of the degrees of freedom is (/
—1)x(/—1), the independence is not rejected using the
level of significance 0.05.

Figure 4 shows times of mapping 7 versus x? where
/=11, N=1,000 and da=10"%. Because the upper 5%
point of x&o is 124.3, the independence is not rejected
when n=73.

From these discussions mentioned above, we deter-
mine that the times of mapping # is 75.

(3) Ciphertext

If we take the infinite significant digit, it is clear
that the decryption process has no error. However,
digital computer’s memory is finite, so computation
error always exist.

Figure 5 shows the rate of the correct decryption
versus the significant digits obtained by computer simu-
lation. Since the times of composite of inverse map is 75,
the cipher space size is 20 digits+75 bits (42.58 digits).
Actually, computation error is accumulated by each
step, so some more digits are required. As a result, if 44
digits is taken for the significant digits, the decryption
process-is always correct.
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3.2 Composite of Map

The tent map is piecewise linear map, therefore
n-times composite of the tent map is also piecewise
linear map. It is described by 2"-segment piecewise
linear function. However, eavesdroppers cannot obtain
the exact form of this function and they cannot even
expect the plaintext without the information about
complete form of the function. This is the basis of the
security of our cryptosystem.

If other chaotic maps which are not piecewise linear
are taken for this cryptosystem, composite maps are not
described by simple function. It can be considered that
the degree of security is higher.

4. Conclusions

We have proposed a new secret key cryptosystem
using a chaotic map. In the case that we use the tent
map as a chaotic map, we verify that correct decryption
is achieved by appropriate setting of the significant digit.
In the proposed system, a plaintext has 2" ciphertexts
and one of 2" ciphertexts is sent to the receiver. Even if
the ciphertext is chosen by any arbitrary way, the
receiver can obtain the plaintext only using the secret
key.

Furthermore, in the case that the times of mapping

-is 75, we verify that the results of the computation for

two slight different keys are relatively independence.
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