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We prove the folowing conjecture by Herman:

Arbitrarily close, in the C∞-topology, to the identity map of a two-dimensional disc there

exists an area-preserving diffeomorphism with positive metric entropy.
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There are a lot of synchronization phenomena in this world. This is one of the

nonlinear phenomena that we can often observe by natural animate beings which do

collective actions. For example, firefly luminescence, cry of birds and frogs, applause

of many people, and so on. Synchronization phenomena have a feature that the set of

small power can produce very big power by synchronizing at a time. Therefore, study

of synchronization phenomena has been widely reported not only in the engineering

but also the physical and the biological fields. Investigation of coupled oscillators is

focused on many researchers, because coupled oscillatory network produces interesting

synchronization phenomena, such as the phase propagation wave, clustering, and com-

plex patterns. In addition, it has the advantage of being able to manufacture for circuit

on the board[1, 2, 3].

In this study, we investigate synchronization phenomena observed in the system

model containing a ring and a star of van der Pol oscillators by circuit experiment

and computer simulation. We observe several types of synchronization phenomena by

increasing the coupling strength of the ring. Then, we observe the synchronization phe-

nomena with computer simulation. van der Pol oscillator is shown in Fig. 1.
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Figure 1: van der pol oscillator.
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Figure 2 shows a system model constituted van der Pol oscillators (VDP-A and

VDP-B). We couple each VDP-B via inductor L and ground by coupling resistor R. In

addition, We couple VDP-A via resistor r. VDP-A is the only one central circuit which

is connected to all VDP-B in this system by resistor r.
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Figure 2: System model.
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Figure 1: van der pol oscillator.

Figure 2 shows a system model constituted van der Pol oscillators (VDP-A and

VDP-B). We couple each VDP-B via inductor L and ground by coupling resistor R. In

addition, We couple VDP-A via resistor r. VDP-A is the only one central circuit which

is connected to all VDP-B in this system by resistor r.

VDP BVDP A C L C

iAiAg
vA

ikg
vk

VDP A

VDP B

VDP A

VDP B
VDP BR R

R

2L

2L 2L 2L 2L
R

r

r

r

r
2L

Figure 2: System model.

References

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world", Nature, vol.

393, pp. 440-442, 1998

[2] A. L. Barabasi and R. Albert, “Emergence of scaling in random networks", Science,

vol. 286, pp. 509-512, 1999

[3] S. H. Strogatz, “Exploring complex networks", Nature, vol. 410, pp. 268-276, 2001



57

Figure 2 shows a system model constituted van der Pol oscillators (VDP-A and

VDP-B). We couple each VDP-B via inductor L and ground by coupling resistor R. In

addition, We couple VDP-A via resistor r. VDP-A is the only one central circuit which

is connected to all VDP-B in this system by resistor r.

VDP BVDP A C L C

iAiAg
vA

ikg
vk

VDP A

VDP B

VDP A

VDP B
VDP BR R

R

2L

2L 2L 2L 2L
R

r

r

r

r
2L

Figure 2: System model.

References

[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world", Nature, vol.

393, pp. 440-442, 1998

[2] A. L. Barabasi and R. Albert, “Emergence of scaling in random networks", Science,

vol. 286, pp. 509-512, 1999

[3] S. H. Strogatz, “Exploring complex networks", Nature, vol. 410, pp. 268-276, 2001

Dynamics of monotone maps on a one-dimensional locally connected
continuum

Vaniukova K. S.

The Institute of information technology, mathematics and mechanics,

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russian Federation

vaniukovaks@gmail.com

By continuum we mean a compact connected metric space.

Let X be a one-dimensional locally connected continuum, f : X → X be a continuous

map. A map f is called to be monotone, if for every connected subset C ⊂ X, f−1(C)

is connected.

One-dimensional locally connected continua have a complicated topological structure.

Therefore, even monotone maps on them have nontrivial dynamics (see, e.g., [1] - [5]).

In this report dynamics of monotone maps on a one-dimensional locally connected

continuum is studied.
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